Não foi possível enviar o arquivo. Será algum problema com as permissões?
Diferenças

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anterior Revisão anterior
Próxima revisão
Revisão anterior
disciplinas:ce067:teoricas:estimacao [2008/05/28 16:26]
joel
disciplinas:ce067:teoricas:estimacao [2008/05/29 11:48] (atual)
joel
Linha 34: Linha 34:
 </​latex>​ </​latex>​
  
-Caso nestas semanas o processo de fabricação esteja sob controle, e as peças tenham sido sorteadas de modo a representar bem os 100 equipamentos fabricados na semana, os valores acima representam 4 diferentes configurações para uma amostra aleatória. +Caso nestas semanas o processo de fabricação esteja sob controle, e as peças tenham sido sorteadas de modo a representar bem os 100 equipamentos fabricados na semana, os valores acima representam 4 diferentes configurações para uma amostra aleatória. ​Veja abaixo como proporção ​de peças boas é estimada ​em cada semana.
- +
-Suponha que estatística ​de interesse ​em cada amostra seja a quantidade de equipamentos com boa resistência,​ ou seja:+
  
 <​latex>​ <​latex>​
-Y:\textit{quantidade ​de peças ​com boa resistência em testadas}+\begin{tabular}{|c|c|} \hline 
 +& proporção ​de peças ​boas \\ \hline 
 +semana 1 & 4/\\ 
 +semana 2 & 3/5 \\ 
 +semana 3 & 4/5 \\ 
 +semana 4 & 3/5 \\ \hline 
 +\end{tabular}
 </​latex>​ </​latex>​
  
-<​latex>​ +É importante ressaltar na tabela acima que diferentes amostragens geram diferentes resultados para a estatística de interesse ​queneste caso, é a proporção de peças boas.
-Y=\sum_{i=1}^n X_i +
-</​latex>​ +
- +
-Esta estatística de interesse ​corresponde a uma variável aleatória com distribuição binomial. Assimpodemos calcular probabilidades para os seus possíveis valores +
- +
  
  ​====== Parâmetros,​ Estimadores e Estimativas ======  ​====== Parâmetros,​ Estimadores e Estimativas ======
Linha 124: Linha 122:
 </​latex>​ </​latex>​
  
-//**Exemplo 7.3**  Em uma cidade, os taxis estão numerados de 1 até //<​latex>​ \theta </​latex>​ //, sendo// <​latex>​ \theta </​latex>​ //é um parâmetro desconhecido que representa a quantidade de taxis na cidade. ​ Supondo que os taxis circulam de modo uniforme por toda cidade, uma pessoal ​anotou a placa dos 5 primeiros taxis que passaram em uma determinada esquina. Estes números foram://+//**Exemplo 7.3**  Em uma cidade, os taxis estão numerados de 1 até //<​latex>​ \theta </​latex>​ //, sendo que // <​latex>​ \theta </​latex>​ //é um parâmetro desconhecido que representa a quantidade de taxis na cidade. ​ Supondo que os taxis circulam de modo uniforme por toda cidade, uma pessoa ​anotou a placa dos 5 primeiros taxis que passaram em uma determinada esquina. Estes números foram://
  
 <​latex>​ <​latex>​
Linha 140: Linha 138:
 <​latex>​\hat{\theta}_3=X_{(5)}+X_{(1)}</​latex>​ <​latex>​\hat{\theta}_3=X_{(5)}+X_{(1)}</​latex>​
  
- +Os três estimadores acima representam três propostas para estimar a quantidade total de taxis na cidade. ​ As funções da amostra apresentadas acima são respectivamente:​ máximo, ​2 vezes a mediana e máximo+mínimo. Ao aplicarmos estes estimadores na amostra obtida teremos as seguintes estimativas:​
- +
-Os três estimadores acima representam três propostas para estimar a quantidade total de taxis na cidade. ​ As funções da amostra apresentadas acima são respectivamente:​ máximo, mediana e máximo+mínimo. Ao aplicarmos estes estimadores na amostra obtida teremos as seguintes estimativas:​+
  
 <​latex>​ <​latex>​
Linha 155: Linha 151:
 \hat{\theta}_{3obs} = 519 \hat{\theta}_{3obs} = 519
 </​latex>​ </​latex>​
- +  ​
  
-  
 Cada um dos exemplos acima propõe 3 estimadores,​ estes são utilizados em uma amostra observada da variável de interesse e são encontradas diferentes estimativas. A questão relevante neste momento é //"​Qual estimador é o mais apropriado ? "//​. ​ A princípio esta questão parece não ter resposta, pois não conhecemos o valor do parâmetro de interesse. ​ Cada um dos exemplos acima propõe 3 estimadores,​ estes são utilizados em uma amostra observada da variável de interesse e são encontradas diferentes estimativas. A questão relevante neste momento é //"​Qual estimador é o mais apropriado ? "//​. ​ A princípio esta questão parece não ter resposta, pois não conhecemos o valor do parâmetro de interesse. ​
  
-Porém, o estimador é uma variável aleatória, logo podemos pensar ​em calcular ​probabilidades ​para seus possíveis valores ​e avaliar estatísticas como: valor esperado e  variância. ​ A partir deste fato são desenvolvidos princípios para qualificar e diferenciar os estimadores. ​ Um estimador mais "​preciso",​ por exemplo, é aquele que possui menor variabilidade de amostra para amostra. ​valor esperado ​de um estimador ​deve ser o valor do parâmetro de interesse na população. Na sequência ​são apresentadas algumas propriedades desejáveis para um bom estimador.+Porém, o estimador é uma variável aleatória, logo podemos pensar ​na sua distribuição de probabilidades e avaliar estatísticas como: valor esperado e  variância. ​ A partir deste fato são desenvolvidos princípios para qualificar e diferenciar os estimadores. ​ Um estimador mais "​preciso",​ por exemplo, é aquele que possui menor variabilidade de amostra para amostra. ​Deseja-se também que valor esperado ​do estimador ​seja o valor do parâmetro de interesse na população. Na seqüência ​são apresentadas algumas propriedades desejáveis para um bom estimador.
  
 ==== Propriedades dos Estimadores ==== ==== Propriedades dos Estimadores ====

QR Code
QR Code disciplinas:ce067:teoricas:estimacao (generated for current page)