Não foi possível enviar o arquivo. Será algum problema com as permissões?
Essa é uma revisão anterior do documento!
Índices em Curitiba
Instalando os pacotes (se necessário)
install.packages(c("maptools", "sp", "spdep", "classInt", "RColorBrewer"), dep=T)
Carregando pacotes necessários
require(maptools) ## funções para importação/expostação e manipulação de mapas e dados geográficos gpclibPermit() ## função para habilitar licença de uso require(sp) ## (classes) para representação de dados espaciais no R require(spdep) ## funções análises de dados de áreas require(classInt) ## rotinas para faclitar a divisão de dados em classes por vários critérios require(RColorBrewer) ## usada aqui para criar palhetas de cores nas visualizações em mapas
Salvando configuração padrão de gráficos
par.ori <- par(no.readonly=TRUE)
Índices em Bairros de Curitiba
Primeiro voce deve copiar os 3 arquivos bairros.*
para sua pasta de trabalho.
Lendo dados tipo shapefiles.
ctba <- readShapePoly("dados/bairros.shp", IDvar="CODE") plot(ctba) head(ctba@data) ctba@data$NOME <- as.character(ctba@data$NOME) ## mudança de codificação de caracteres (só use se necessário, ## depende do sistema operacional e do enconding do sistema) ## Veja os nomes dos unicípios e se os acentos aparecem corretamente #Encoding(ctba@data$NOME) #Encoding(ctba@data$NOME) <- "latin1" #ctba@data$NOME <- enc2native(ctba@data$NOME) #head(ctba@data)
Lendo agroa a tabela de atributos
tb <- read.csv("dados/tabe.csv", enc="latin1") head(tb) ## ops nao importou corretamente assim! ## vamos importar de outra forma: tb <- read.table("dados/tabe.csv", sep=";", head=T, enc="latin1") head(tb) str(tb)
Os dados de diferentes origens não necessariamente estão na mesma ordem.
É necessário checar e reordenar se necessário
ind <- match(ctba@data$CODE, tb$CODE) ind tb <- tb[ind,] row.names(tb) <- ctba$CODE ctba <- spCbind(ctba, tb) names(ctba) head(ctba@data)
Visualizando um mapa do atributo: Segurança
#INT <- classIntervals(ctba$Segurança, n=5, style="quantile") INT <- classIntervals(ctba$Segurança, style="fixed", fixedBreaks=c(0, 20, 40, 60, 80, 100)) CORES.5 <- c(rev(brewer.pal(3, "Blues")), brewer.pal(3, "Reds"))[-1] ## tirando uma cor no final COL <- findColours(INT, CORES.5) plot(ctba, col=COL) title("Segurança") TB <- attr(COL, "table") legtext <- paste(names(TB)) #, " (", TB, ")", sep="") legend("bottomright", fill=attr(COL, "palette"), legend=legtext, bty="n")
Calculando vizinhanças (segundo um critério de vizinhança – note que há outros!!!)
ctba.nb1 <- poly2nb(ctba) args(poly2nb) ## OBS: outros tipos de vizinhanças podem ser calculados: ## - mudando argumentos de poly2nb ## - usando outras funções de vizinhança tal como: dnearneigh() and knearneigh()
Algumas análises
## Moran global moran.test(ctba$Segurança, listw=nb2listw(ctba.nb1)) args(moran.test) moran.mc(ctba$Segurança, listw=nb2listw(ctba.nb1), nsim=99) args(moran.mc) ## Uma alternativa ao Moran: estatística de Geary geary.test(ctba$Segurança, listw=nb2listw(ctba.nb1)) ## Moran na presença de covariáveis (substituri 1 por covariaveis abaixo) ## faz Moran em resíduos lm.morantest(lm(ctba$Segurança ~1), listw=nb2listw(ctba.nb1)) lm.morantest.exact(lm(ctba$Segurança ~1), listw=nb2listw(ctba.nb1)) ## Moran local(um tipo de LISA - Local indicator of spatial association) ctba.mloc <- localmoran(ctba$Segurança, listw=nb2listw(ctba.nb1, style="C")) ctba.mloc ## Fazendo um mapa dos índices de Moran local head(ctba.mloc) range(ctba.mloc[,1]) INT <- classIntervals(ctba.mloc[,1], style="fixed", fixedBreaks=seq(-1, 2.5, by=0.5)) CORES.7 <- c(rev(brewer.pal(3, "Blues")), brewer.pal(4, "Reds")) COL <- findColours(INT, CORES.7) plot(ctba, col=COL) title("I de Moran Local para Segurança") TB <- attr(COL, "table") legtext <- paste(names(TB)) #, " (", TB, ")", sep="") legend("bottomright", fill=attr(COL, "palette"), legend=legtext, bty="n") #, cex=0.9, y.inter=0.8) ## uma visualização com outro tipo de fatiamento (por quantis) INT <- classIntervals(ctba$Segurança, n=7, style="quantile", dataPrecision=2) #INT <- classIntervals(ctba$Segurança, n=5, style="sd") CORES.7 <- c(rev(brewer.pal(3, "Blues")), brewer.pal(4, "Reds")) COL <- findColours(INT, CORES.7) plot(ctba, col=COL) title("I de Moran Local para Segurança") TB <- attr(COL, "table") legtext <- paste(names(TB)) #, " (", TB, ")", sep="") legend("bottomright", fill=attr(COL, "palette"), legend=legtext, bty="n") #, cex=0.9, y.inter=0.8) ## Poderia-se fazer tb um mapa dos índices de Moran local padronizados! ## Mapa das probabilidades (significâncias do I de Moral local) head(ctba.mloc) INT <- classIntervals(ctba.mloc[,5], style="fixed", fixedBreaks=c(0, 0.001, 0.01, 0.05, 0.10, 0.20, 1)) CORES.6 <- c(rev(brewer.pal(5, "Reds")), brewer.pal(5, "Blues")) COL <- findColours(INT, CORES.6) plot(ctba, col=COL) title("p-valores do I de Moran Local para Segurança") TB <- attr(COL, "table") legtext <- paste(names(TB)) #, " (", TB, ")", sep="") legend("bottomright", fill=attr(COL, "palette"), legend=legtext, bty="n", cex=0.9, y.inter=0.8) ## LISA Map (+/+) , (-,-), (+,-), (-,+) ## calculando a médias dos atributos locais (padronizados) com os dos vizinhos head(ctba.mloc) ## montando matrix W de vizinhança ctba.nb1.mat <- nb2mat(ctba.nb1) ## Segurança Padronizada Segurança_SD <- scale(ctba$Segurança) ## Cálculo da m;édia da Seguranca Padronizada nos visinhos Segurança_W <- ctba.nb1.mat %*% Segurança_SD ## Diagrama de espalhamento de Moran plot(Segurança_SD, Segurança_W) abline(v=0, h=0) ## Montando o mapa do espalhamento de Moran Q <- ifelse((Segurança_SD>=0 & Segurança_W >=0), 1, 0) Q[(Segurança_SD<0 & Segurança_W < 0)] <- 2 Q[(Segurança_SD>=0 & Segurança_W < 0)] <- 3 Q[(Segurança_SD<0 & Segurança_W >= 0)] <- 4 table(Q) CORES.4 <- c("blue", "green" , "red", "yellow") plot(ctba, col=CORES.4[Q]) title("Mapa LISA") legend("bottomright", c("Q(+/+)", "Q(-/-)", "Q(+/-)", "Q(-/+)"), fill=CORES.4) ## Fazer análises para outras variáveis destes dados!!!table ## OBS: ## Para dados não contínuos (e normais) modificações e alternativas são usadas!!!