Não foi possível enviar o arquivo. Será algum problema com as permissões?
Diferenças

Diferenças

Aqui você vê as diferenças entre duas revisões dessa página.

Link para esta página de comparações

Ambos lados da revisão anterior Revisão anterior
Próxima revisão
Revisão anterior
artigos:ernesto3:simpj [2008/10/08 22:43]
paulojus
artigos:ernesto3:simpj [2008/10/16 00:50] (atual)
paulojus
Linha 1: Linha 1:
 ====== A joint model proposal????​ ====== ====== A joint model proposal????​ ======
 +  - {{artigos:​ernesto3:​joint.rnw|Arquivo Sweave com o modelo proposto}}
  
 ===== Ideias for simulation and model ===== ===== Ideias for simulation and model =====
Linha 70: Linha 71:
  
 //​**pensando melhor...**//​ //​**pensando melhor...**//​
-pensando melhor no que escrevi antes acho que me empolguei meio rápido ​    +pensando melhor no que escrevi antes acho que me empolguei meio rápido demais: 
-demais: +  - p3 precisa ser calculado associado aos betas tb caso contrário se for feito por diferenca como propus inicialmente composicoes (p1 e p2) que ficam restritas a serem menores que 0.5. Com isto acho que o modelo ​ válido 
-  - p3 precisa ser calculado associado aos betas tb caso contrário +  - me parece ainda que uma outra idéia ​para gerar associação ​estava bem na nossa frente e nao percebemos: usar o  modelo multinomial com a abundância ​como covárivel!!! - no paper isto pode ter certa vantagem por unificar com o diagnóstico que utilizamos. Seria bom fazer umas simu;ação [para ver as situações geradas. 
-se for feito por diferenca como propus inicialmente ​composicoes (p1 e    + 
-p2) que ficam restritas a serem menores que 0.5. Com isto acho que o modelo ​ válido +===== Alternativa usando CDA ===== 
-  - me parece ainda que uma outra ideia para gerar associao ​estava bem na + 
-nossa frente e nao percebemos: usar o  modelo multinomial com a abundancia ​como covarivel!!!+<code R> 
 +require(lattice) 
 +require(MASS) 
 +require(geoR) 
 + 
 +gs <- expand.grid((0:​10)/​10,​ (0:​10)/​10) 
 +  
 +# basic gaussians to be used posteriorly  
 +s2 <- 0.5 
 +Sig <- diag(c(1,​1,​1,​1,​1)) 
 +Sig[1,4] <- 0.9 
 +Sig[4,1] <- 0.9 
 +Sig <- Sig*s2 
 +Sig 
 +m0 <- mvrnorm(nrow(gs),​ c(2,​0,​0,​0,​0),​ Sig) 
 +plot(as.data.frame(m0)) 
 +cor(m0) 
 + 
 +# Generate a spatial Gaussian process Y 
 +phi <- 0.25 
 +sigmasq <- 1 
 +Y <- grf(grid=gs,​ cov.pars=c(sigmasq,​ phi)) 
 +Y$data <- exp(m0[,​1]+Y$data) 
 +var(log(Y$data)) 
 + 
 +## option 1: age compositions independent from Y 
 +# Generate age compositions independent from Y 
 +comp.1 <- t(apply(cbind(exp(m0[,​c(2,​3)]),​1),​1,​function(x) x/​sum(x))) 
 +dim(comp.1) 
 +apply(comp.1,​ 2, range) 
 +cor(cbind(comp.1,​ log(Y$data))) 
 +plot(as.data.frame(cbind(comp.1,​ log(Y$data)))) 
 + 
 +lr.1 <- data.frame(lr13 = log(comp.1[,​1]/​comp.1[,​3]),​ lr23 = log(comp.1[,​2]/​comp.1[,​3]),​ Y=log(Y$data)) 
 +cor(lr.1) 
 +cor(lr.1, met="​spea"​) 
 +plot(lr.1) 
 + 
 + 
 +# Build abundance at age  
 +Yi.1 <- comp.1*Y$data  
 +dim(Yi.1) 
 +cor(cbind(Yi.1,​ log(Y$data))) 
 +plot(as.data.frame(cbind(Yi.1,​ log(Y$data)))) 
 + 
 +## option 2: age compositions dependent from Y 
 +# Generate age compositions dependent from Y 
 +comp.2 <- t(apply(cbind(exp(m0[,​c(3,​4)]),​1),​1,​function(x) x/​sum(x))) 
 +apply(comp.1,​ 2, range) 
 +cor(cbind(comp.2,​ log(Y$data))) 
 +cor(cbind(comp.2,​ log(Y$data)),​ met="​spea"​) 
 +plot(as.data.frame(cbind(comp.2,​ log(Y$data)))) 
 + 
 +lr.2 <- data.frame(lr13 = log(comp.2[,​1]/​comp.2[,​3]),​ lr23 = log(comp.2[,​2]/​comp.2[,​3]),​ Y=log(Y$data)) 
 +cor(lr.2) 
 +cor(lr.2, met="​spea"​) 
 +plot(lr.2) 
 + 
 +lr.2a <- data.frame(lr12 = log(comp.2[,​1]/​comp.2[,​2]),​ lr32 = log(comp.2[,​3]/​comp.2[,​2]),​ Y=log(Y$data)) 
 +cor(lr.2a) 
 +cor(lr.2a, met="​spea"​) 
 +plot(lr.2a) 
 + 
 +# Build abundance at age  
 +Yi.2 <- comp.2*Y$data  
 +dim(Yi.2) 
 +cor(cbind(Yi.2,​ log(Y$data))) 
 +plot(as.data.frame(cbind(Yi.2,​ log(Y$data)))) 
 +  
 +df0 <- data.frame(abund=c(Yi.1,​Yi.2),​ comp=c(comp.1,​comp.2),​Y=Y$data,​ opt=rep(c("​indep","​dep"​),​ 
 +                  rep(length(comp.1),​2)),​ age=rep(rep(c(1,​2,​3),​2),​rep(length(comp.1)/​3,​6))) 
 +  
 +# plots 
 +xyplot(comp~log(Y)|age*opt,​data=df0) 
 +xyplot(abund~Y|age*opt,​data=df0) 
 +plot(as.geodata(Y)) 
 +</​code>​ 
 + 
 +O problema que temos nestes casos em que simulamos Y e depois obtemos Yi por Y*pi é que a estrutura espacial dos Yi vai ser exactamente a mesma. Se acrescentarmos variabilidade com estrutura espacial temos que recalcular os pi ... 
 + 
 +PJ: De fato mas para fazer diferente teria que simular de outra forma pois aqui só tem um Y geoestatistico gerado. O modelo multivariado ​ conjunto para os LR seria a alternativa. Por outro lado eu nao vejo muito problema nesta fato pois as correlacoes entra as composicoes de certa forma tratam isto. 
 + 
  
  

QR Code
QR Code artigos:ernesto3:simpj (generated for current page)