

1. Na tabela abaixo temos dados referentes a classficação quanto ao sexo e o curso dos alunos de uma universidade.

Curso	Homen (H)	Mulher (M)	Total
Mat. pura (P)	70	40	110
Mat. aplicada (A)	15	15	30
Estatística (E)	10	20	30
Computação (C)	20	10	30
Total	115	85	200

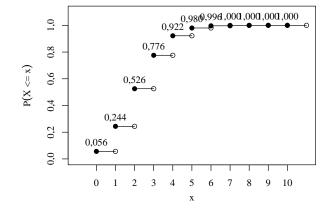
Use as letras entre parênteses como indicadores dos eventos (e.g. H indica o evento "um aluno ao acaso ser do sexo H"). Calcule a probabilidade dos seguintes eventos (indique os cálculos):

- a) P(A); e) $P(H \cup M)$; i) $P(A \cup H^c)$;
- b) P(H); f) $P(A \cap H)$; j) P(A|H);
- c) $P(E^c)$; g) $P(A \cup H)$; k) P(H|A);
- d) $P(H \cap M)$; h) $P(A \cap P^c)$; l) $P(H|A^c)$;
- 2. Seja X a variável aleatória número de clientes que compram jornal a cada 5 clientes que chegam em uma banca de jornais. A probabilidade uma pessoa ao acaso que chega na banca comprar o jornal é de 0,70. Se X tem distribuição de probabilidades binomial, responda (indique os cáculos):
- a) Qual o valor dos parâmetros da distribuição?;
- b) Qual o valor esperado para X?;
- c) Qual é a P(X=1);
- d) Qual é a $P(X = 1 \cup X = 2)$;
- e) Qual é a $P(X \leq 1)$;
- f) Qual é a $P(X \le 4)$;
- 3. Uma certa região florestal foi dividida em 109 quadrados de onde foram contadas o número (X) de plantas de uma espécie. A príncipio acredita-se que a distribuição das plantas no espaço seja independente. A média do número de plantas por quadrado foi 2,2 e as frequências relativas observadas após amostragem estão na tabela a seguir (dado: $\mathrm{e}^{-2,2}=0,1108$).

\overline{x}	0	1	2	3	4
f(x)	$0,\!24$	$0,\!19$	0,21	$0,\!13$	0,10
\overline{x}	5	6	7	8	9
f(x)	0,04	0,05	0,04	0,01	0,00

Com base na informação do enunciado, qual seria um modelo de distribuição de probabilidades adequado para representar a variável aleatória X? Com esse modelo calcule P(X=0), P(X=1) e P(X=2). Compare as três probabilidades calculadas com a frequências relativas observadas. Você acha que o modelo probabilístico adotado é adequado? Qual seria uma possível causa da não adequabilidade do modelo proposto?

- 4. Um empresário avalia a proposta de duas contrutoras à respeito da ampliação do seu pátio industrial. A construtora A afirma que entrega a obra pronta com 50 dias com variância de 3 dias². A construtora B entrega a obra com 48 dias com variância de 18 dias². Se a indústria ficar mais de 49 dias sem funcionamento por ocasião da contrução, haverá prejuízos por não atender os clientes. Calcule qual a probabilidade das empresas A e B entregarem a obra antes dos 49 dias. Considere distribuição normal para o tempo de entrega da obra.
- 5. O gráfico abaixo associa as probabilidades acumuladas ($P(X \le x)$) aos valores x assumidos por uma variável aleatória discreta X que assume valores $x = 0, 1, 2, \ldots, 10$. Com as informações do gráfico responda:
- a) Qual $P(X \le 4)$?
- c) Qual $P(1 < X \le 4)$?
- b) Qual P(X = 4)?
- d) Qual $P(X \ge 3)$?

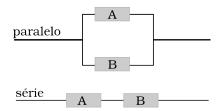


Expressões úteis

$$P(A \cup B) = P(A) + P(B) - P(A \cap B), \quad P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad \mu = \sum_{\forall x} x p(x), \quad \sigma^2 = \sum_{\forall x} (x - \mu)^2 p(x)$$

$$P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad \binom{n}{x} = \frac{n!}{x!(n-x)!}, \quad z = \frac{x-\mu}{\sigma}$$

6. Circuitos elétricos são constituídos de combinações de arranjos de resistores em série e em paralelo. Os dois circuitos abaixo possuem resistores A e B com probabilidade de falha de P(A) = 0.1 e P(B) = 0.2. Calcule a probabilidade de cada um dos sistemas pararem sabendo que os componentes operam de forma independente.



7. Numa pesquisa recente verificou-se que o número de pessoas com lesões graves em acidentes de carro é uma variável aleatória (X) com a seguinte distribuição de probabilidade:

\overline{x}	0	1	2	3	4	5
P(x)	0,08	0,18	0,28	$0,\!22$	$0,\!16$	0,08

O que precisa ser satisfeito para que P(x) seja uma distribuição de probabilidades? Qual o valor esperado de X, E(X)? Qual a variância de X, V(X)?

- 8. Na manufatura de certo produto, é sabido que 1 entre 10 exemplares é defeituoso. Qual a probabilidade de em uma amostra casual de 4 exemplares haver:
- a) nenhum defeituoso;
- b) exatamente um defeituoso;
- c) exatamente dois defeituosos;
- d) não mais que dois defeituosos;