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Generalized Linear Mixed Models

• When using linear mixed models (LMMs) we assume that the
response being modeled is on a continuous scale.

• Sometimes we can bend this assumption a bit if the response
is an ordinal response with a moderate to large number of
levels. For example, the Scottish secondary school test results
were integer values on the scale of 1 to 10.

• However, an LMM is not suitable for modeling a binary
response, an ordinal response with few levels or a response
that represents a count. For these we use generalized linear
mixed models (GLMMs).

• To describe GLMMs we return to the representation of the
response as an n-dimensional, vector-valued, random variable,
Y , and the random effects as a q-dimensional, vector-valued,
random variable, B.



GLMM Contraception Item Response NLMM

Parts of LMMs carried over to GLMMs

• Random variables
Y the response variable
B the (possibly correlated) random effects
U the orthogonal random effects

• Parameters
β - fixed-effects coefficients
σ - the common scale parameter (not always used)
θ - parameters that determine Var(B) = σ2(TS)(TS)′

• Some matrices
X the n× p model matrix for β
Z the n× q model matrix for b
P fill-reducing q × q permutation (from Z)
S(θ) non-negative q × q diagonal scale matrix
T (θ) q × q unit lower-triangular matrix
A(θ) = (ZT (θ)S(θ))′
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The conditional distribution, Y |U
• For GLMMs, the marginal distribution, B ∼ N (0,Σ(θ)) is

the same as in LMMs except that σ2 is omitted. We define
U ∼ (0, Iq) such that B = T (θ)S(θ)P ′U .

• For GLMMs we retain some of the properties of the
conditional distribution

(Y |U = u) ∼ N
(
µY|U , σ2I

)
where µY|U (u) = Xβ+A′P ′u

Specifically
• The distribution Y |U = u depends on u only through the

conditional mean, µY|U (u).
• Elements of Y are conditionally independent. That is, the

distribution of Y |U = u is completely specified by the
univariate, conditional distributions, Yi|U , i = 1, . . . , n.

• These univariate, conditional distributions all have the same
form. They differ only in their means.

• GLMMs differ from LMMs in the form of the univariate,
conditional distributions and in how µY|U (u) depends on u.
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Some choices of univariate conditional distributions

• Typical choices of univariate conditional distributions are:
• The Bernoulli distribution for binary (0/1) data, which has

probability mass function

p(y|µ) = µy(1− µ)1−y, 0 < µ < 1, y = 0, 1

• Several independent binary responses can be represented as a
binomial response, but only if all the Bernoulli distributions
have the same mean.

• The Poisson distribution for count (0, 1, . . . ) data, which has
probability mass function

p(y|µ) = e−y µy

y!
, 0 < µ, y = 0, 1, 2, . . .

• All of these distributions are completely specified by the
conditional mean. This is different from the conditional
normal (or Gaussian) distribution, which also requires the
common scale parameter, σ.
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The link function, g

• When the univariate conditional distributions have constraints
on µ, such as 0 < µ < 1 (Bernoulli) or 0 < µ (Poisson), we
cannot define the conditional mean, µY|U , to be equal to the
linear predictor, Xβ + A′P ′u, which is unbounded.

• We choose an invertible, univariate link function, g, such that
η = g(µ) is unconstrained. The vector-valued link function, g,
is defined by applying g component-wise.

η = g(µ) where ηi = g(µi), i = 1, . . . , n

• We require that g be invertible so that µ = g−1(η) is defined
for −∞ < η < ∞ and is in the appropriate range (0 < µ < 1
for the Bernoulli or 0 < µ for the Poisson). The vector-valued
inverse link, g−1, is defined component-wise.
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“Natural” link functions

• There are many choices of invertible scalar link functions, g,
that we could use for a given set of constraints.

• For the Bernoulli and Poisson distributions, however, one link
function arises naturally from the definition of the probability
mass function. (The same is true for a few other, related but
less frequently used, distributions, such as the gamma
distribution.)

• To derive the natural link, we consider the logarithm of the
probability mass function (or, for continuous distributions, the
probability density function).

• For distributions in this “exponential” family, the logarithm of
the probability mass or density can be written as a sum of
terms, some of which depend on the response, y, only and
some of which depend on the mean, µ, only. However, only
one term depends on both y and µ, and this term has the
form y · g(µ), where g is the natural link.
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The natural link for the Bernoulli distribution

• The logarithm of the probability mass function is

log(p(y|µ)) = log(1−µ)+y log
(

µ

1− µ

)
, 0 < µ < 1, y = 0, 1.

• Thus, the natural link function is the logit link

η = g(µ) = log
(

µ

1− µ

)
.

• Because µ = P [Y = 1], the quantity µ/(1− µ) is the odds
ratio (in the range (0,∞)) and g is the logarithm of the odds
ratio, sometimes called “log odds”.

• The inverse link is

µ = g−1(η) =
eη

1 + eη
=

1
1 + e−η
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Plot of natural link for the Bernoulli distribution
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Plot of inverse natural link for the Bernoulli distribution
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The natural link for the Poisson distribution

• The logarithm of the probability mass is

log(p(y|µ)) = log(y!)− µ + y log(µ)

• Thus, the natural link function for the Poisson is the log link

η = g(µ) = log(µ)

• The inverse link is

µ = g−1(η) = eη
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The natural link related to the variance

• For the natural link function, the derivative of its inverse is
the variance of the response.

• For the Bernoulli, the natural link is the logit and the inverse
link is µ = g−1(η) = 1/(1 + e−η). Then

dµ

dη
=

e−η

(1 + e−η)2
=

1
1 + e−η

e−η

1 + e−η
= µ(1− µ) = Var(Y)

• For the Poisson, the natural link is the log and the inverse link
is µ = g−1(η) = eη. Then

dµ

dη
= eη = µ = Var(Y)
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The unscaled conditional density of U |Y = y

• As in LMMs we evaluate the likelihood of the parameters,
given the data, as

L(θ,β|y) =
∫

Rq

[Y |U ](y|u) [U ](u) du,

• The product [Y |U ](y|u)[U ](u) is the unscaled (or
unnormalized) density of the conditional distribution U |Y .

• The density [U ](u) is a spherical Gaussian density
1

(2π)q/2 e−‖u‖2/2.

• The expression [Y |U ](y|u) is the value of a probability mass
function or a probability density function, depending on
whether Yi|U is discrete or continuous.

• The linear predictor is g(µY|U ) = η = Xβ + A(θ)′P ′u.
Alternatively, we can write the conditional mean of Y , given
U , as

µY|U (u) = g−1
(
Xβ + A(θ)′P ′u

)
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The conditional mode of U |Y = y

• In general the likelihood, L(θ,β|y) does not have a closed
form. To approximate this value, we first determine the
conditional mode

ũ(y|θ,β) = arg max
u

[Y |U ](y|u) [U ](u)

using a quadratic approximation to the logarithm of the
unscaled conditional density.

• This optimization problem is (relatively) easy because the
quadratic approximation to the logarithm of the unscaled
conditional density can be written as a penalized, weighted
residual sum of squares,

ũ(y|θ,β) = arg min
u

∥∥∥∥[
W 1/2(µ)

(
y − µY|U (u)

)
−u

]∥∥∥∥2

where W (µ) is the diagonal weights matrix. The weights are
the inverses of the variances of the Yi.
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The PIRLS algorithm

• Parameter estimates for generalized linear models (without
random effects) are usually determined by iteratively
reweighted least squares (IRLS), an incredibly efficient
algorithm. PIRLS is the penalized version. It is iteratively
reweighted in the sense that parameter estimates are
determined for a fixed weights matrix W then the weights are
updated to the current estimates and the process repeated.

• For fixed weights we solve

min
u

∥∥∥∥[
W 1/2

(
y − µY|U (u)

)
−u

]∥∥∥∥2

as a nonlinear least squares problem with update, δu, given by

P
(
AMWMA′ + I

)
P ′δu = PAMW (y − µ)− u

where M = dµ/dη is the (diagonal) Jacobian matrix. Recall
that for the natural link, M = Var(Y |U) = W−1.
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The Laplace approximation to the deviance

• At convergence, the sparse Cholesky factor, L, used to
evaluate the update is

LL′ = P
(
AMWMA′ + I

)
P ′

or
LL′ = P

(
AMA′ + I

)
P ′

if we are using the natural link.

• The integrand of the likelihood is approximately a constant
times the density of the N (ũ,LL′) distribution.

• On the deviance scale (negative twice the log-likelihood) this
corresponds to

d(β,θ|y) = dg(y,µ(ũ)) + ‖ũ‖2 + log(|L|2)

where dg(y,µ(ũ)) is the GLM deviance for y and µ.



GLMM Contraception Item Response NLMM

Modifications to the algorithm

• Notice that this deviance depends on the fixed-effects
parameters, β, as well as the variance-component parameters,
θ. This is because log(|L|2) depends on µY|U and, hence, on
β. For LMMs log(|L|2) depends only on θ.

• It is likely that modifying the PIRLS algorithm to optimize
simultaneously on u and β would result in a value that is very
close to the deviance profiled over β.

• Another approach, which is being implemented as a Google
Summer of Code project, is adaptive Gauss-Hermite
quadrature (AGQ). This has a similar structure to the Laplace
approximation but is based on more evaluations of the
unscaled conditional density near the conditional modes. It is
only appropriate for models in which the random effects are
associated with only one grouping factor
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The Contraception data set
• One of the data sets in the "mlmRev" package, derived from

data files available on the multilevel modelling web site, is
from a fertility survey of women in Bangladesh.

• We consider a binary response - whether the woman currently
uses artificial contraception.

• Covariates included the woman’s age (on a centered scale),
the number of live children she has, whether she lives in an
urban or rural setting, and the district in which she lives.

• These data are quite unbalanced with regard to the covariates
(some districts have only 2 observations, some have nearly
120).

• We should bear in mind that the binary responses have low
per-observation information content (exactly one bit per
observation). Districts with few observations will not
contribute strongly to estimates of random effects.

• Within-district plots will be too rough. We can examine the
influence of some of the covariates by plotting scatterplot
smoother curves of the response versus age by other
covariates.
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Contraception use versus age by urban and livch
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Comments on the data plot

• On the multilevel modelling web site they compare various
forms of multilevel software fitting a model that is linear in
age to these data. The model is clearly inappropriate.

• The form of the curves suggests at least a quadratic in age.
Once you see the plot it is obvious why this should be so.
(They don’t say what age correspond to 0 on this scale but
my guess is about 25 years of age.)

• The urban versus rural differences may be additive.

• It appears that the livch factor could be dichotomized into
“0” versus “1 or more”.
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Preliminary model fit

Generalized linear mixed model fit by the Laplace approximation

Formula: use ~ age + I(age^2) + urban + livch + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2389 2433 -1186 2373

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.22586 0.47524

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0350725 0.1743606 -5.936 2.91e-09

age 0.0035328 0.0092311 0.383 0.702

I(age^2) -0.0045623 0.0007252 -6.291 3.15e-10

urbanY 0.6972694 0.1198788 5.816 6.01e-09

livch1 0.8150448 0.1621898 5.025 5.03e-07

livch2 0.9165107 0.1850995 4.951 7.37e-07

livch3+ 0.9150210 0.1857689 4.926 8.41e-07
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Comments on the model fit

• There is a highly significant quadratic term in age.

• The linear term in age is not significant but we retain it
because the age scale has been centered at an arbitrary (and
unknown) value.

• The urban factor is highly significant (as indicated by the
plot).

• Levels of livch greater than 0 are significantly different from
0 but may not be different from each other.
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Interpreting coefficient estimates

• We are using the logit link, which is the natural link for the
Bernoulli.

• For the logit link the coefficients apply to the linear predictor
of the log-odds.

• The intercept is the predicted log-odds for a woman with
centered age of 0 (we expect this means an age of 25 or so),
not in an urban environment and with 0 live children. As an
odds ratio this is e−1.035 = 0.355 and a probability of 0.262.

• For a dichotomous factor like urban the coefficient 0.697 is
the increase in the log-odds for urban versus rural when other
covariates are held fixed.

• This corresponds to multiplication of the odds-ratio by
e0.697 = 2.008. The predicted probability of contraception use
for a woman with centered age 0 in an urban environment
with no live children is 0.416 (it is the odds-ratio, not the
probability, that is multiplied by 2.008)
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Consider dichotomizing livch to 0/1+
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Reduced model with dichotomized livch

> print(cm2 <- glmer(use ~ age + I(age^2) + urban + ch +
+ (1 | district), Contraception, binomial), corr = FALSE)

Generalized linear mixed model fit by the Laplace approximation

Formula: use ~ age + I(age^2) + urban + ch + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2385 2419 -1187 2373

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.22470 0.47402

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0064262 0.1678949 -5.994 2.04e-09

age 0.0062563 0.0078404 0.798 0.425

I(age^2) -0.0046354 0.0007163 -6.471 9.73e-11

urbanY 0.6929504 0.1196687 5.791 7.01e-09

chY 0.8603758 0.1473539 5.839 5.26e-09
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Comparing the model fits

• A likelihood ratio test can be used to compare these nested
models.

> anova(cm2, cm1)

Data: Contraception

Models:

cm2: use ~ age + I(age^2) + urban + ch + (1 | district)

cm1: use ~ age + I(age^2) + urban + livch + (1 | district)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

cm2 6 2385.2 2418.6 -1186.6

cm1 8 2388.7 2433.3 -1186.4 0.4571 2 0.7957

• The large p-value indicates that we would not reject cm2 in
favor of cm1 hence we prefer the more parsimonious cm2.

• The plot of the scatterplot smoothers according to live
children or none indicates that there may be a difference in
the age pattern between these two groups.
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Allowing age pattern to vary with ch

Generalized linear mixed model fit by the Laplace approximation

Formula: use ~ age * ch + I(age^2) + urban + (1 | district)

Data: Contraception

AIC BIC logLik deviance

2379 2418 -1183 2365

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 0.22306 0.4723

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3233176 0.2144470 -6.171 6.79e-10

age -0.0472956 0.0218394 -2.166 0.0303

chY 1.2107858 0.2069938 5.849 4.93e-09

I(age^2) -0.0057572 0.0008358 -6.888 5.64e-12

urbanY 0.7140326 0.1202579 5.938 2.89e-09

age:chY 0.0683522 0.0254347 2.687 0.0072
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Prediction intervals on the random effects
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Extending the random effects

• We may want to consider allowing a random effect for
urban/rural by district. This is complicated by the fact the
many districts only have rural women in the study

district

urban 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 54 20 0 19 37 58 18 35 20 13 21 23 16 17 14 18

Y 63 0 2 11 2 7 0 2 3 0 0 6 8 101 8 2

district

urban 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

N 24 33 22 15 10 20 15 14 49 13 39 45 25 45 27 24
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Including a random effect for urban by district

Generalized linear mixed model fit by the Laplace approximation

Formula: use ~ age * ch + I(age^2) + urban + (urban | district)

Data: Contraception

AIC BIC logLik deviance

2372 2422 -1177 2354

Random effects:

Groups Name Variance Std.Dev. Corr

district (Intercept) 0.37830 0.61506

urbanY 0.52613 0.72535 -0.793

Number of obs: 1934, groups: district, 60

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3442631 0.2227667 -6.034 1.60e-09

age -0.0461836 0.0219446 -2.105 0.03533

chY 1.2116527 0.2082373 5.819 5.93e-09

I(age^2) -0.0056514 0.0008431 -6.703 2.04e-11

urbanY 0.7902095 0.1600484 4.937 7.92e-07

age:chY 0.0664682 0.0255674 2.600 0.00933
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Significance of the additional random effect

> anova(cm4, cm3)

Data: Contraception

Models:

cm3: use ~ age * ch + I(age^2) + urban + (1 | district)

cm4: use ~ age * ch + I(age^2) + urban + (urban | district)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

cm3 7 2379.2 2418.2 -1182.6

cm4 9 2371.5 2421.6 -1176.8 11.651 2 0.002951

• The additional random effect is highly significant in this test.

• Most of the prediction intervals still overlap zero.

• A scatterplot of the random effects shows several random
effects vectors falling along a straight line. These are the
districts with all rural women or all urban women.
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Prediction intervals for the bivariate random effects
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Scatter plot of the conditional modes
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Conclusions from the example

• Again, carefully plotting the data is enormously helpful in
formulating the model.

• Observational data tend to be unbalanced and have many
more covariates than data from a designed experiment.
Formulating a model is often more difficult than in a designed
experiment.

• A generalized linear model family, typically binomial or
poisson, is specified as the family argument in the call to
glmer.

• We use likelihood-ratio tests and z-tests in the model building.
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Item Response Models

• Models for binary (or ordered categorical) data that are
cross-classified according to subject and item are sometimes
called Item Response or IRT (Item Response Theory) models.

• There is a long history of models for such data with many
contributors. Only recently have statisticians become aware of
this literature and considered how such models could be
framed in the context of GLMMs.

• Even when approaching IRT models as GLMMs they were not
expressed as GLMMs with crossed random effects, because of
software limitations.

• Because glmer can fit GLMMs with crossed random effects,
we can approach such models as GLMMs with random effects
for subject and item.
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Data from a study of verbal aggression

• Results on a study of verbal aggression, used as an example
through the book Expanatory Item Response Models, edited
by De Boeck and Wilson (Springer, 2004) are available as the
data set VerbAgg, in the “long” format.

• The items correspond to scenarios for which the subject was
asked if they would curse, scold or shout.

• The scenarios are classified according to the behavior mode
(want versus do) and according to the situation (self-to-blame
versus other-to-blame).

• The subjects are classified by sex. Each subject’s score on a
separately administered anger index (STAXI) is given.

• The response was recorded on a three-level ordinal scale
(“no”, “perhaps” and “yes”). We will consider a dichotomous
version, r2.
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Structure of VerbAgg data

• We also check that the item-level covariates and the
person-level covariates are consistently defined.

> str(VerbAgg)

’data.frame’: 7584 obs. of 9 variables:

$ Anger : int 20 11 17 21 17 21 39 21 24 16 ...

$ Gender: Factor w/ 2 levels "M","F": 2 2 1 1 1 1 1 1 1 1 ...

$ item : Factor w/ 24 levels "S1wantcurse",..: 1 1 1 1 1 1 1 1 1 1 ...

$ resp : Ord.factor w/ 3 levels "no"<"perhaps"<..: 1 1 2 2 2 3 3 1 1 3 ...

$ id : Factor w/ 316 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ btype : Factor w/ 3 levels "curse","scold",..: 1 1 1 1 1 1 1 1 1 1 ...

$ situ : Factor w/ 2 levels "other","self": 1 1 1 1 1 1 1 1 1 1 ...

$ mode : Factor w/ 2 levels "want","do": 1 1 1 1 1 1 1 1 1 1 ...

$ r2 : Factor w/ 2 levels "N","Y": 1 1 2 2 2 2 2 1 1 2 ...

> stopifnot(nrow(unique(subset(VerbAgg, select = c(item,
+ btype, situ, mode)))) == 24, nrow(unique(subset(VerbAgg,
+ select = c(id, Anger, Gender)))) == 316)
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Influence of item-level covariates

• We can check the proportions of responses for combinations
of item-level covariates

> round(100 * ftable(prop.table(xtabs(~mode + situ +
+ resp, VerbAgg), 1:2)), 1)

resp no perhaps yes

mode situ

want other 37.7 30.0 32.3

self 55.9 29.1 15.0

do other 49.8 27.2 23.0

self 66.2 23.5 10.3
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Influence of person-level covariates

Anger Index (STAXI)

no

perhaps

yes
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Initial model fit
Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger * Gender + situ + btype + mode + (1 | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

8156 8225 -4068 8136

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 1.79337 1.33917

item (Intercept) 0.11715 0.34226

Number of obs: 7584, groups: id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.531954 0.433782 1.226 0.22008

Anger 0.058490 0.019474 3.003 0.00267

GenderF 0.402523 0.782316 0.515 0.60688

situself -1.054279 0.151192 -6.973 3.10e-12

btypescold -1.059810 0.184156 -5.755 8.67e-09

btypeshout -2.103818 0.186515 -11.280 < 2e-16

modedo -0.707055 0.151005 -4.682 2.84e-06

Anger:GenderF -0.004111 0.038170 -0.108 0.91424
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Removing non-significant gender effects

Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger + situ + btype + mode + (1 | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

8155 8210 -4069 8139

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 1.81157 1.34595

item (Intercept) 0.11720 0.34235

Number of obs: 7584, groups: id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.63927 0.38334 1.668 0.095391

Anger 0.05685 0.01682 3.380 0.000726

situself -1.05437 0.15122 -6.972 3.12e-12

btypescold -1.05973 0.18419 -5.753 8.75e-09

btypeshout -2.10392 0.18655 -11.278 < 2e-16

modedo -0.70726 0.15104 -4.683 2.83e-06
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Allowing situational/behavior random effects by person
Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger + situ + btype + mode + (1 | id:btype) + (1 | id:situ) + (1 | id:mode) + (1 | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

7751 7827 -3865 7729

Random effects:

Groups Name Variance Std.Dev.

id:btype (Intercept) 1.41069 1.18772

id:mode (Intercept) 0.80916 0.89953

id:situ (Intercept) 0.61539 0.78447

id (Intercept) 1.70950 1.30748

item (Intercept) 0.17213 0.41489

Number of obs: 7584, groups: id:btype, 948; id:mode, 632; id:situ, 632; id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.79167 0.48183 1.643 0.100375

Anger 0.07483 0.02107 3.551 0.000384

situself -1.35742 0.19199 -7.070 1.55e-12

btypescold -1.36067 0.24118 -5.642 1.68e-08

btypeshout -2.69333 0.24372 -11.051 < 2e-16

modedo -0.94095 0.19503 -4.825 1.40e-06
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Item-specific random effects
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Person-specific random effects - Intercept
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Correlated random effects by person
Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger + situ + btype + mode + (1 + situ + btype + mode | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

7727 7880 -3842 7683

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 4.53799 2.13025

situself 1.31455 1.14654 -0.521

btypescold 1.62188 1.27353 -0.085 -0.247

btypeshout 4.03049 2.00761 -0.374 0.010 0.423

modedo 1.68341 1.29746 -0.295 0.112 0.102

item (Intercept) 0.18222 0.42687

0.104

Number of obs: 7584, groups: id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.98354 0.47248 2.082 0.03738

Anger 0.06564 0.02041 3.217 0.00130

situself -1.37646 0.19723 -6.979 2.97e-12

btypescold -1.30375 0.23811 -5.475 4.37e-08

btypeshout -2.73191 0.25666 -10.644 < 2e-16

modedo -0.97882 0.20000 -4.894 9.88e-07
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Outline

Definition of Generalized Linear Mixed Models

A GLMM for Binary Observational Data

Item Response Models as GLMMs

Definition of Nonlinear Mixed Models
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