AN INTRODUCTION TO PAIR-COPULA CONSTRUCTIONS

Ramiro Ruiz Cárdenas

1° Workshop do projeto PROCAD:
Seguro Agrícola: Modelagem Estatística e Precificação

UFMG - Belo Horizonte, Novembro 25-27 de 2009

Multivariate Distributions

Consider n random variables $X=\left(X_{1}, \ldots, X_{n}\right)$ with

- joint density $f\left(x_{1}, \ldots, x_{n}\right)$ and marginal densities $f_{i}\left(x_{i}\right), i=1, \ldots, n$
- joint cdf $F\left(x_{1}, \ldots, x_{n}\right)$ and marginal cdf's $F_{i}\left(x_{i}\right), i=1, \ldots, n$
- $f($. |.) denote corresponding conditional densities
and consider the factorization

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =f\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \cdot f\left(x_{1}, \ldots, x_{n-1}\right) \\
& =\left[\prod_{t=2}^{n} f\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right)\right] \cdot f_{1}\left(x_{1}\right)
\end{aligned}
$$

Copula

A copula is a multivariate distribution on $[0,1]^{n}$ with uniformly distributed marginals.

- copula $\operatorname{cdf} C\left(u_{1}, \ldots, u_{n}\right)$
- copula density $c\left(u_{1}, \ldots, u_{n}\right)$

Using Sklar's Theorem (1959) we have for absolutely continuous bivariate distributions with continuous marginal cdf's

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) \cdot f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \\
f\left(x_{1} \mid x_{2}\right) & =c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) \cdot f_{1}\left(x_{1}\right)
\end{aligned}
$$

for some bivariate copula density $c_{12}($.$) .$

Pair-copula constructions (PCC)

- Multivariate data can be modelled using a cascade of pair-copulae, acting on two variables at a time.
- The basic idea is to decompose an arbitrary distribution function into simple bivariate building blocks and stitch them together appropriately.
- These bivariate blocks are two-dimensional copulas and we have a large selection to choose from.

The two dimensional case

For the base case in two dimensions we can easily see that

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =c_{12}\left(F_{1}(x 1), F_{2}\left(x_{2}\right)\right) \cdot f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) \\
F\left(x_{1}, x_{2}\right) & =C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) \\
f_{211}\left(x_{2} \mid x_{1}\right) & =\frac{f\left(x_{1}, x_{2}\right)}{f_{1}\left(x_{1}\right)}=c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) \cdot f_{2}\left(x_{2}\right)
\end{aligned}
$$

The three dimensional case

- Any three-dimensional density function can be written in the form

$$
f\left(x_{1}, x_{2}, x_{3}\right)=f_{1}\left(x_{1}\right) \cdot f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) \cdot f_{3 \mid 1,2}\left(x_{3} \mid x_{1}, x_{2}\right)
$$

- we can write

$$
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) \cdot f_{2}\left(x_{2}\right)
$$

- conditioning in X_{2}, we have that

$$
f_{3 \mid 1,2}\left(x_{3} \mid x_{1}, x_{2}\right)=c_{13 \mid 2}\left(F_{1 \mid 2}\left(x_{1} \mid x_{2}\right), F_{3 \mid 2}\left(x_{3} \mid x_{2}\right)\right) \cdot f_{3 \mid 2}\left(x_{3} \mid x_{2}\right)
$$

- This yields the full decomposition

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right)= & f_{1}\left(x_{1}\right) \\
& c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) f_{2}\left(x_{2}\right) . \\
& c_{13 \mid 2}\left(F_{1 \mid 2}\left(x_{1} \mid x_{2}\right), F_{3 \mid 2}\left(x_{3} \mid x_{2}\right)\right) \cdot c_{23}\left(F_{2}\left(x_{2}\right) \cdot F_{3}\left(x_{3}\right)\right) \cdot f_{3}\left(x_{3}\right)
\end{aligned}
$$

The four dimensional case

- For a four-dimensional density we start with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1}\left(x_{1}\right) \cdot f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) \cdot f_{3 \mid 1,2}\left(x_{3} \mid x_{1}, x_{2}\right) \cdot f_{4 \mid 1,2,3}\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

- and rewrite it in terms of six pair-copulas and the four marginal densities $f_{i}\left(x_{i}\right)$ for $i=1,2,3,4$:

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & f_{1}\left(x_{1}\right) . \\
& c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) \cdot f_{2}\left(x_{2}\right) . \\
& c_{23 \mid 1}\left(F_{2 \mid 1}\left(x_{2} \mid x_{1}\right), F_{3 \mid 1}\left(x_{3} \mid x_{1}\right)\right) \cdot c_{13}\left(F_{1}\left(x_{1}\right), F_{3}\left(x_{3}\right)\right) \cdot f_{3}\left(x_{3}\right) . \\
& c_{34 \mid 12}\left(F_{3 \mid 12}\left(x_{3} \mid x_{1}, x_{2}\right), F_{4 \mid 12}\left(x_{4} \mid x_{1}, x_{2}\right)\right) . \\
& c_{24 \mid 1}\left(F_{2 \mid 1}\left(x_{2} \mid x_{1}\right), F_{4 \mid 1}\left(x_{4} \mid x_{1}\right)\right) . \\
& c_{14}\left(F_{1}\left(x_{1}\right), F_{4}\left(x_{4}\right)\right) \cdot f_{4}\left(x_{4}\right)
\end{aligned}
$$

Pair-copula constructions (PCC)

- For distinct $i, j, i_{1}, \ldots, i_{k}$ with $i<j$ and $i_{1}<\ldots<i_{k}$ let

$$
c_{i, j i_{1}, \ldots, i_{k}}:=c_{i, j i_{1}, \ldots, i_{k}}\left(F\left(x_{i} \mid x_{i_{1}}, \ldots, x_{i_{k}}\right),\left(F\left(x_{j} \mid x_{i_{1}}, \ldots, x_{i_{k}}\right)\right)\right.
$$

- Reexpress $f\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right)$ as

$$
\begin{aligned}
f\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right) & =c_{1,|t| \ldots, t-1} \cdot f\left(x_{t} \mid x_{1}, \ldots, x_{t-2}\right) \\
& =\left[\prod_{s=1}^{t-2} c_{s, t \mid s+1 \ldots, \ldots-1}\right] \cdot c_{(t-1), t} \times f_{t}\left(x_{t}\right)
\end{aligned}
$$

- Using (1) and $s=i, t=i+j$ it follows that

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =\left[\prod_{t=2}^{n} \prod_{s=1}^{t-2} c_{s, t \mid s+1, \ldots, t-1}\right] \cdot\left[\prod_{t=2}^{n} c_{(t-1), t}\right]\left[\prod_{k=1}^{n} f_{k}\left(x_{k}\right)\right] \\
& =\left[\prod_{j=1}^{n-1} \prod_{i=1}^{n-j} c_{i,(i+j) \mid(i+1), \ldots,(i+j-1)}\right] \cdot\left[\prod_{k=1}^{n} f_{k}\left(x_{k}\right)\right]
\end{aligned}
$$

Marginal conditional distributions

- many of the pair-copulas need to be evaluated at a conditional distribution of the form $F(x \mid \mathbf{v})$, where \mathbf{v} denotes a vector of variables.
- The calculation of these conditional distributions is also recursive.
- Let \boldsymbol{v}_{-j} denote the vector \mathbf{v} but excluding the j th component v_{j}. For every j,

$$
F(x \mid \boldsymbol{v})=\frac{\partial C_{x, v_{j} \mid v_{-j}}\left(F\left(x \mid \mathbf{v}_{-j}\right), F\left(v_{j} \mid \mathbf{v}_{-j}\right)\right)}{\partial F\left(v_{j} \mid \mathbf{v}_{-j}\right)}
$$

where $C_{x, v_{j} v_{-j}}$ is a bivariate copula function.

- For the special case where \mathbf{v} has only one component we have

$$
F(x \mid v)=\frac{\partial C_{x, v}\left(F_{x}(X), F_{v}(V)\right)}{\partial F_{v}(V)}
$$

Pair-Copula Constructions and Vines

- The above decomposition is called a pair-copula construction (PCC).
- The decomposition is not unique. That is, for high-dimensional distributions there are many possible pair-copula constructions.
- Bedford and Cooke (2002) introduced a graphical model called regular vine that help us organize a subset of all possible decompositions.
- The class of regular vines is large and embraces a large number of possible PCC's. Two special cases are:
- D-Vine
- Canonical Vine

Both consists of sequences of trees that show us how to write a joint density function into pair-copulas and marginal densities

Canonical Vine Representation

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right) f_{4}\left(x_{4}\right) \\
& c_{31}\left(F_{3}\left(x_{3}\right), F_{1}\left(x_{1}\right)\right) c_{32}\left(F_{3}\left(x_{3}\right), F_{2}\left(x_{2}\right)\right) c_{34}\left(F_{3}\left(x_{3}\right), F_{4}\left(x_{4}\right)\right) \\
& c_{21 \mid 3}\left(F_{2 \mid 3}\left(x_{2} \mid x_{3}\right), F_{1 \mid 3}\left(x_{1} \mid x_{3}\right)\right) c_{24 \mid 3}\left(F_{2 \mid 3}\left(x_{2} \mid x_{3}\right), F_{4 \mid 3}\left(x_{4} \mid x_{3}\right)\right) \\
& c_{14 \mid 23}\left(F_{1 \mid 23}\left(x_{1} \mid x_{2}, x_{3}\right), F_{4 \mid 23}\left(x_{4} \mid x_{2}, x_{3}\right)\right)
\end{aligned}
$$

The intuition behind canonical vines is that one variable plays a key role in the dependency structure and so everyone is linked to it.

D-Vine Representation

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right) f_{4}\left(x_{4}\right) \\
& c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) c_{23}\left(F_{2}\left(x_{2}\right), F_{3}\left(x_{3}\right)\right) c_{34}\left(F_{3}\left(x_{3}\right), F_{4}\left(x_{4}\right)\right) \\
& c_{13 \mid 2}\left(F_{1 \mid 2}\left(x_{1} \mid x_{2}\right), F_{3 \mid 2}\left(x_{3} \mid x_{2}\right)\right) c_{24 \mid 3}\left(F_{2 \mid 3}\left(x_{2} \mid x_{3}\right), F_{4 \mid 3}\left(x_{4} \mid x_{3}\right)\right) \\
& c_{14 \mid 23}\left(F_{1 \mid 23}\left(x_{1} \mid x_{2}, x_{3}\right), F_{4 \mid 23}\left(x_{4} \mid x_{2}, x_{3}\right)\right)
\end{aligned}
$$

Estimating the Pair-Copula Decomposition

The canonical or D-vine constructions decompose an n-dimensional multivariate density function into two main components.

- the product of each of the marginal density functions.
- the product of the density functions of $n(n-1) / 2$ bivariate copulas.

To estimate the parameters of either construction we need to
(1) decide which family to use for each pair-copula and
(2) estimate all necessary parameters simultaneously

chi-plots (Fischer and Switzer, 1985)

- A chi-plot is a graphical method to help us extract information about the dependence between two random variables.
- The essence of the chi-plot is to compare the empirical bivariate distribution against the null hypothesis of independence at each point in the scatterplot.
- To construct this plot from a set of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ we calculate three empirical distribution functions: the bivariate distribution H and the two marginal distributions F and G.
- For each point $\left(x_{i}, y_{i}\right)$ let H_{i} be the proportion of points below and to the left of $\left(x_{i}, y_{i}\right)$. Also let F_{i} and G_{i} be the proportion of points to the left and below of the point $\left(x_{i}, y_{i}\right)$, respectively.

chi-plots (Fischer and Switzer (1985)

Each point $\left(\chi_{i}, \lambda_{i}\right)$ of the χ-plot is then defined by

$$
\begin{equation*}
\chi_{i}=\frac{H_{i}-F_{i} G_{i}}{\sqrt{F_{i}\left(1-F_{i}\right) G_{i}\left(1-G_{i}\right)}} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{i}=4 S_{i} \max \left\{\left(F_{i}-\frac{1}{2}\right)^{2},\left(G_{i}-\frac{1}{2}\right)^{2}\right\} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{i}=\operatorname{sign}\left\{\left(F_{i}-\frac{1}{2}\right)\left(G_{i}-\frac{1}{2}\right)\right\} . \tag{26}
\end{equation*}
$$

The formal definitions for H, F and G are

$$
\begin{align*}
H_{i} & =\frac{1}{n-1} \sum_{j \neq i} I\left(x_{j} \leq x_{i}, y_{j} \leq y_{i}\right) \tag{27}\\
F_{i} & =\frac{1}{n-1} \sum_{j \neq i} I\left(x_{j} \leq x_{i}\right) \tag{28}\\
G_{i} & =\frac{1}{n-1} \sum_{j \neq i} I\left(y_{j} \leq y_{i}\right) \tag{29}
\end{align*}
$$

chi-plots (Fischer and Switzer (1985)

Chi-plot Construction I

(a)

(c)

(b)

(d)

Some References

Aas, K., Czado, C. Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44, 182-198.

Bedford, T. and Cooke, R.M. (2002) Vines - a new graphical model for dependent random variables. Annals of Statistics 30, 1031-1068.

Fisher, N. I., and Switzer, P. (1985) Chi-plots for assessing dependence. Biometrika, 72, 253-265.

Min, A. and Czado, C. (2008) Bayesian inference for multivariate copulas using pair-copula constructions. Technical Report, Center for Mathematical Sciences, Munich University of Technology.

Schirmacher, D. and Schirmacher, E. (2008) Multivariate Dependence Modeling Using Pair-Copulas. Liberty Mutual Group. available at:
http://64.49.242.50/library/monographs/other-monographs/2008/april/mono-2008-m-as08-1-schirmacher.pdf

蔦
Genest, C. Rémillard, B. and Beaudoin, D. (2009) Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44, 199-213.

