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Bayesian methods have become widespread in marketing literature. We review the essenceof the Bayesian approach and explain why it is particularly useful for marketing prob-
lems. While the appeal of the Bayesian approach has long been noted by researchers, recent
developments in computational methods and expanded availability of detailed marketplace
data has fueled the growth in application of Bayesian methods in marketing. We emphasize
the modularity and flexibility of modern Bayesian approaches. The usefulness of Bayesian
methods in situations in which there is limited information about a large number of units
or where the information comes from different sources is noted. We include an extensive
discussion of open issues and directions for future research.
(Bayesian Statistics; Decision Theory; Marketing Models; Critical Review)

1. Introduction
The past ten years have seen a dramatic increase in
the use of Bayesian methods in marketing. Bayesian
analyses have been conducted over a wide range of
marketing problems from new product introduction
to pricing, and with a wide variety of different data
sources. Bayesian methods are particularly appropri-
ate to the decision orientation of marketing problems.
While the conceptual appeal of Bayesian methods has
long been recognized, the recent popularity stems
from computational and modeling breakthroughs that
have made Bayesian methods attractive for many
marketing problems. In this paper, we will outline the
basic advantages of the Bayesian approach, explain
how hierarchical Bayes models are ideally suited to
many marketing data sets and decisions, and outline
the nature of the computational revolution. Through-
out, we will emphasize the importance of a decision
orientation that we believe is an important aspect of
marketing as a field.
Until the mid-1980s, Bayesian methods appeared to
be impractical because the class of models for which
the posterior could be computed were no larger than
the class of models for which exact sampling results
were available. Moreover, the Bayes approach does

require assessment of a prior, which some feel to be an
extra cost. Simulation methods, in particular, Markov
Chain Monte Carlo (MCMC) methods, have freed
us from computational constraints for a very wide
class of models. MCMC methods are ideally suited
for models built from a sequence of conditional dis-
tributions, often called hierarchical models. Bayesian
hierarchical models offer tremendous flexibility and
modularity and are particularly useful for marketing
problems as discussed below.
While Bayesian methods have risen to prominence
in many fields, this review will emphasize a per-
spective on the use of Bayes methods that stems
from a basic marketing paradigm. Fundamental to
this perspective is the notion that customers are dif-
ferent in their preferences for products and that firms
must explicitly take this into account in determin-
ing optimal marketing actions. It is useful, there-
fore, to view statistical analysis as comprised of three
components:
1. within-unit behavior (the conditional likelihood);
2. across-unit behavior (the distribution of hetero-
geneity);
3. action (the solution to a decision problem involv-
ing a loss function).
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We will see how the Bayesian approach provides a
unified treatment of all three components.
We will follow these three steps as the outline of
the paper, and conclude the paper with a discussion
of open issues and directions for future research. We
have also included Annotated Citations of Bayesian
Applications in Marketing in Appendix 1, which con-
tains a list of published or accepted papers of the
last ten years that tackle marketing problems using
Bayesian methods. The annotations provide a brief
description of the paper and how it relates to the top-
ics discussed in this paper.

2. Bayesian Essentials
In this section, we introduce our notation for the
Bayesian paradigm, and comment on the impor-
tant distinctions between classical and Bayesian
approaches. We feel that these distinctions are under-
appreciated by researchers in marketing. We do not
attempt to provide a primer for Bayesian inference.
For those interested in an introduction to Bayesian
inference and modern Bayesian computing methods,
there are many excellent texts, including Bernardo
and Smith (1994), Gelman et al. (1995), Robert and
Casella (1999), and Liu (2001).
All Bayesian analysis starts with the specification
of the data-generating mechanism or the distribu-
tion of the data y, given the unobservable parame-
ters �, p�y ���. Viewed as a function of the parameters,
this distribution is sometimes called the likelihood
function, l��� = p�y ���. The Bayesian, therefore, sub-
scribes to the likelihood principle that states that the
likelihood function contains all relevant information
regarding the model parameters. In addition, a proba-
bility distribution representing prior beliefs about � is
required, p���. Bayes theorem provides the updating
mechanism for how prior beliefs are translated into
posterior (or after the data) beliefs.

p�� �y�= p�y ���p���
p�y�

∝ p�y ���p����

p�� �y� is called the posterior distribution and reflects
both the prior beliefs, as well as sample information.
We note, immediately, that the posterior is a condi-
tional distribution that conditions on the data. This

provides a marked contrast to the sampling theo-
retic view in which we consider the data random,
and we investigate the behavior of test statistics or
estimators over imaginary samples from p�y ���. The
Bayesian would regard the sampling distribution as
irrelevant to the problem of inference because it con-
siders events �y� that have not occurred. Inference is
the problem of making statements about the unob-
servables conditional on the data.
Since the posterior distribution can be a high-
dimensional object, investigators typically summarize
the posterior in terms of some lower dimensional
summary statistics. Typically, the posterior mean
E	�
 = ∫

� p�� �y�d� is used as an estimator and the
posterior standard deviation is used as a measure of
precision. Both of these quantities are the integrals of
specific functions of the parameter vector, E� �y	h���
.
Other important examples include: (i) Aspects of the
marginal distribution of one element or a subset of
the � vector; (ii) posterior probabilities of intervals
or regions of the parameter space (such as the pos-
terior probability that a price coefficient is negative);
and (iii) predictive distributions of the data, p�yf �y�=∫
p�yf ���p�� �y�d�. Thus, the Bayesian investigator is
faced with the problem of computing a multidimen-
sional integral of the posterior distribution. Methods
for computing these integrals are at the core of the
recent revolution in computing for Bayesian statistics.
The Bayesian framework is compelling in the sense
that it provides a unified approach to modeling, incor-
poration of prior information, and inference. Inference
here refers to making a posteriori statements about
all unobservables including both parameters and, as
yet unrealized, data (prediction). Bayesian inference
adheres to the likelihood principle and is conducted
using formal rules of probability theory. This means
that, under mild conditions, Bayes estimators are con-
sistent, asymptotically efficient, and admissible. As a
practical matter, Bayesian inference is free from the
use of asymptotic approximations and delivers exact,
finite sample inference. This is particularly important
in nonlinear models and models with discrete data.
The intuition developed for regression models of the
sample size required for asymptotic sampling the-
ory to be accurate does not carry over well to many
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of the models used with marketing data. In partic-
ular, choice models may require extremely large (as
much as 1,000 observations per parameter) samples
to insure the adequacy of asymptotic approximations
(cf. McCulloch and Rossi 1994).
In general, Bayesian methods provide a better
approximation to the level of uncertainty or, con-
versely, the amount of information provided by the
model and the data than other approaches. For exam-
ple, consider two-step procedures in which a subset
of parameters are estimated in the first stage, then
the second stage estimates the remaining parameters,
conditional on the first subset. Parameter uncertainty
is difficult to account for in multistage analyses. Lenk
and DeSarbo (2000) provide an example of how a
full Bayesian procedure outperforms an approximate
two-step procedure for clustering problems. Parame-
ter uncertainty and model uncertainty are particularly
important considerations in optimal decision theory.
Optimal decision making should take into account
uncertainty to avoid the problem of “overconfidence”
(see Montgomery and Bradlow 1999). Bayesian deci-
sion theory provides a unified approach to inference,
model choice, and uncertainty as discussed in §6 of
this paper
The advantages of Bayesian inference are not
obtained without a cost, however. The Bayesian
approach is likelihood-based and requires a prior.
Some have criticized Bayesian methods as relying on
“subjective” prior information. It is important to note
that the basis of prior information can also be “objec-
tive” or data-based. In addition, all modeling assump-
tions are a form of prior information. The advantage
of the Bayesian approach is that all prior assump-
tions are explicitly stated. Adherence to the princi-
ples of scientific inquiry does not rule out the use
of subjective information but, rather, the specifica-
tion of explicit and replicable procedures. It should
be noted that in the practical domain of market-
ing, methods that make full use of prior information
are required for reliable inference because informa-
tion about unknown quantities is hard to come by.
Prior information from experts (Sandor and Wedel
2001), theories (Montgomery and Rossi 1999), or other
datasets (Lenk and Rao 1990, Putler et al. 1996,
Kamakura and Wedel 1997, Wedel and Pieters 2000,

Ansari et al. 2000a, Ter Hofstede et al. 2002) is impor-
tant to marketing problems. Classical inference pro-
cedures are silent on how to incorporate information
from sources other than the data.
Some contend that specification of the likeli-
hood function is another drawback of the Bayesian
approach. For some models, evaluation of the like-
lihood can be computationally demanding. In other
situations, the investigator may be concerned with
model specification error induced by specifying an
inappropriate likelihood. Recent developments in sta-
tistical computing have opened up the possibility of
analyzing likelihood functions once thought to be
computationally intractable. Regarding prior and like-
lihood specification, we recommend that the investi-
gator perform sensitivity analysis.

3. MCMC Simulation Methods
The general computational problem facing Bayesians
is the computation of various integrals of functions
with respect to the posterior distribution. Since these
integrals can be written as the posterior expectation
of a function of the parameters, simulation methods
seem natural candidates for approximation. For exam-
ple, if we could make i.i.d. draws from the poste-
rior we could simply approximate the integrals by the
sample mean

I = E� �y	h���
=
∫

h���p�� �y�d�

Î = 1/R
R∑

r=1
h��r ��

If draws from the posterior are available at low com-
putational cost, we could simply use a very large
sample to approximate I to any desired degree of
accuracy. However, the general problem of draw-
ing from an arbitrary multivariate distribution is
extremely difficult and there is no computationally
feasible general method.
Instead of using i.i.d. draws, another approach
could be to construct a Markov chain with the pos-
terior as its stationary or equilibrium distribution. In
practice, this means specifying a transition density
that produces a sequence of � draws. �r is a draw
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from p��r ��r−1� given �0. If p�� �y� is the stationary
distribution of this Markov chain, then we can simply
iterate the chain long enough to dissipate the effects
of the initial condition and then save these draws to
evaluate Î . While these draws are no longer i.i.d. (they
will exhibit some form of autocorrelation in most
cases), laws of large numbers still apply and we can
approximate I to any desired degree of accuracy. The
use of a Markov chain to develop a simulation-based
estimate of I has been termed a MCMC method (see
Robert and Casella 1999 for a comprehensive discus-
sion of these methods, and Chib 2003 for an excellent
overview). The usefulness of the MCMC idea depends
on three criteria:
(i) the ability to construct chains for arbitrary pos-
terior distributions;
(ii) the ability of the chain to quickly converge to
the equilibrium distribution and not to exhibit highly
autocorrelated or near nonstationary behavior;
(iii) ease of drawing from the transition density of
the chain.
The class of Metropolis-Hastings algorithms pro-
vide a set of methods for constructing Markov chains.
Tierney (1994) shows that under very mild condi-
tions (mostly that the posterior density is positive
everywhere in the parameter space), the Metropolis-
Hastings style methods will converge at a geometric
rate to the unique equilibrium distribution that will
be the posterior. One particularly useful member of
the Metropolis-Hastings class is the so-called Gibbs
sampler. The Gibbs sampler is dependent on the abil-
ity to draw from various conditional distributions of
the joint posterior. Partition the � vector into K sub-
vectors, �′ = ��′

1� � � � � �
′
K�, and consider the conditional

distributions pk��k ��−k� y�, where −k refers to the ele-
ments of �, other than the kth element. If it is possi-
ble to draw from these conditional distributions, then
the Markov chain that can be constructed by cycling
through these conditional distributions has the pos-
terior as its invariant distribution. That is, to draw
�r ��r−1, we cycle through each of the K conditionals

p1
(
�r�1 ��r−1�2� �r−1�3� � � � � �r−1�K� y

)
p2
(
�r�2 ��r�1� �r−1�3� � � � � �r−1�K� y

)
���

pK

(
�r�K ��r�1� �r�2� � � � � �r�K−1�y

)
�

The sequence of draws converges in distribution to
the joint posterior distribution of the model param-
eters, p��1� � � � � �K �y�. In addition, draws from the
posterior distribution for any one parameter,

p��i �y�=
∫

p��1� � � � � �K �y�d�−i

is obtained by simply discarding the draws of param-
eters not of interest. For example, the posterior mean
of p��i �y� can be estimated from the sample mean of
the �i draws.
Many models can be expressed such in a way that
these various conditionals are available in closed-
form and from well-known distributions that are easy
to sample from. For example, single and groups of
linear regressions fall into this class. In addition, data
augmentation allows standard probit models to be
sampled using the Gibbs sampler. Today most work
is being done with models that no longer have a
simple Gibbs sampler. However, the modular or con-
ditional setup of the Gibbs sampler is frequently
exploited. Typically, some sort of hybrid approach is
used, in which Gibbs-style draws are combined with
“Metropolis”-style draws.
It is possible to define a Metropolis-Hastings style
MCMC algorithm for many models, including highly
nonlinear models or models defined in high dimen-
sions. These algorithms, however, must be inves-
tigated closely to insure that they navigate freely
through the parameter space and reach the regions
of high posterior probability. It is possible to stop a
slowly navigating chain and conclude that the pos-
terior is very tight when, in fact, the algorithm is
moving too slowly. We recommend that investiga-
tors simulate data to investigate performance of the
MCMC algorithm. Independence Metropolis or ran-
dom walk Metropolis algorithms must have properly
chosen candidate sampling distributions in order to
function well in high-dimensional parameter spaces.
We recommend that investigators check these meth-
ods against the slower, but more reliable, one-by-one
Griddy Gibbs methods.
In summary, MCMC methods are now available
to handle inference in a wide class of models.
MCMC methods are particularly well-suited to mod-
els which are built from a hierarchy of conditional
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distributions. One very important example is random
coefficient models, discussed below. Perhaps, more
importantly, the modularity of the hierarchical mod-
eling approaches, that dovetails so well with MCMC
methods, has enlarged the class of priors and likeli-
hoods available for use in marketing applications.

4. Within-Unit Analysis:
Likelihoods and Marketing Data

Marketing is concerned with understanding and
reacting to the behavior of individual consumers.
Decisions are ultimately made at a disaggregate level,
although for some types of decisions (e.g., setting
store prices) an aggregate-level analysis is acceptable.
We note that it is always possible to derive aggre-
gate predictions of actions by integrating over the dis-
tribution of heterogeneity. Our discussion, therefore,
focuses on data and models assuming that the unit
of analysis is an individual respondent, consumer, or
household.
Marketing data is sparse at the individual-unit
level. In scanner panels of household purchases, for
example, it is rare to have more than 20 observa-
tions per household in most product categories. Each
observation is a vector response corresponding to
the quantity purchased of a particular offering. The
most frequent response value is zero, indicating no
purchase of the offering, and the second most fre-
quent response is one, indicating that one unit of
the good is purchased. Responses also take on inte-
ger values in surveys where respondents are asked
to choose between discrete alternatives, to rank order
objects (Bradlow and Fader 2001), and to provide
responses on five- and seven-point scales. Marketing
data are typically very lumpy, and are not well-suited
to standard distributional assumptions (e.g., normal,
gamma, Poisson).
Latent variable models are often used to explain
marketing data. A latent variable model typically
assumes that there exists an unobserved continuous
variable and a censoring mechanism that gives rise
to the discrete outcome. In an economic model of
choice between near-perfect substitutes, for example,
consumers are assumed to select the offering with
greatest value, measured as the ratio of marginal util-

ity to price. In the analysis of survey response data,
it is sometimes convenient to assume that responses
on a fixed-point (e.g., five- and seven-point) scale are
a censored realization of a latent, continuous vari-
able. Finally, in the analysis of multiple response data
(i.e., pick any of J data), each element of the vector
of multivariate binomial responses can be thought of
as being equal to one if a latent variable surpasses a
threshold, and equal to zero if the latent variable is
less than the threshold value.
The advantage of a latent variable approach to
modeling marketing data is that it provides a flexi-
ble approach to specifying the likelihood function that
is consistent with the observed, lumpy data (Rossi
et al. 2001, Marshall and Bradlow 2002). Models for
the latent utility can be continuous even though the
range of the observed dependent variable is discrete.
Many useful models can be constructed starting from
an underlying multivariate normal regression model

z= X�+� �∼ N�0����

Here, z is a m×1 vector, which is multivariate normal
conditional on x. The latent vector, z, is censored via
some function which is not a function of the model
parameters, �����. Examples include:
Tobit Model: m= 1, y = 0, z < 0, y = z, z≥ 0
Ordered Probit: m = 1, y = r , cr−1 ≤ z < cr , r = 1�

� � � �R, c0 =−�� cR =�
Multinomial Probit (MNP): y = j , zj = max�z1�

� � � � zm�
Multivariate Probit: yj = 1, zj > 0; else yj = 0

These four examples illustrate the flexibility of
the latent framework. The Tobit model produces a
discrete-continuous distribution for y given x that has
a lump of probability at zero (the no-purchase option,
for example). The ordered probit can be applied to
ratings data in which the respondent provides ratings
on a ratings scale. The MNP probit model is a very
flexible general model that accommodates situations
in which choices are made from a set of m alterna-
tives. Finally, the multivariate probit model can be
used in situations such as the pick j from J alterna-
tives or where binary choice is made in different time
periods or categories of products.
Latent variable models can often be given an eco-
nomic interpretation as a random utility model. Con-
sider, for example, the MNP model. If consumers have
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linear utility and can only choose one alternative, the
utility-maximizing choice is the choice for which the
ratio of marginal utility to price is the highest;

y = j# if Uj/pj =max%Ui/pi&�

where Ui is the marginal utility of choice i. In the
random utility model, marginal utilities are not fully
observable. We only observe various attributes of the
choice that are represented in the x vector. If ln�Ui�=
Vi +�i and �i ∼ N�0���, then the model becomes

y = j# if Vj − ln�pj �+�j =max
i

%Vi − ln�pi�+�i&�

This is a special case of the MNP model. The error
terms have the interpretation as the unobservable fac-
tors influencing marginal utility. The random util-
ity approach can be applied to any demand model
(see Blattberg and George 1991, Arora et al. 1998,
Manchanda et al. 1999, Bradlow and Rao 2000,
Leichty et al. 2001). If we specify a utility function,
the random component of marginal utility will induce
a distribution on the quantity demanded via the first
order conditions for utility maximization. This will
create a likelihood for the data. If the indifference
curves of the specified utility function intersect the
axes of the positive orthant with nonzero slope, then
there is the potential for corner solutions in which
some of the components of the demand vector will
be zero. These corners will create a mixed discrete-
continuous distribution of demand (Kim et al. 2002).
Models involving multivariate latent variables
(such as the MNP and multivariate probit models)
have a likelihood function that can be computa-
tionally challenging to evaluate. For example, con-
sider the MNP model. If alternative j is chosen from
m alternatives, this reveals that we are in a certain
region of the error space (actually a cone). Thus, the
multinomial probabilities required for evaluation of
the MNP likelihood involve integrals over a region of
the error space

Pr�i �����=
∫
R
(�z �)= X����dz�

The choice probabilities involve integrals of a
multivariate normal density over cones, and these
integrals pose a potentially severe computational

problem. Classical econometricians have focused on
methods for approximating these integrals. The state
of the art in this area is the so-called GHK algorithm
(Keane 1993). The GHK algorithm uses importance
sampling to approximate these probabilities. The cur-
rent classical practice involves using simulation meth-
ods to approximate the likelihood (Huber and Train
2001) and then uses standard maximum likelihood
procedures, ignoring the simulation error (this is often
called the simulated maximum likelihood approach).

4.1. Data Augmentation
Direct evaluation of the censored normal likelihood
can be avoided in a Bayesian approach if the param-
eters are augmented with a vector of latent variables, z
(see Tanner and Wong 1987). To a Bayesian, all unob-
servable quantities can be considered the object of
inference regardless of whether they are called param-
eters or latent variables. Technically, the number of
latent variables can be the same as the number of
observations, so large sample inference based on stan-
dard asymptotics does not apply. The posterior we
now require is the joint distribution of the unobserv-
able latent vector �z�, and the parameter vector (��,
given the data �y�. To reduce notational burden, we
will only consider the case of one observation. The
joint posterior of z and � is now the object of infer-
ence. The posterior of � is a marginal of this joint
posterior.

p�� �y�=
∫

p�z�� �y�dz�
As it turns out, we can exploit the latent structure of
the model to construct a “Gibbs-style” Markov chain
that can sample from the joint posterior of the latents
and the parameters. We can then simply marginal-
ize on the data by discarding the draws of z. That is,
we draw iteratively from the two conditional distri-
butions:

p�z �y��� and p�� �z�y��
The draw of the latent z given y is a draw from a
truncated normal distribution where the truncation
depends on the model. In the MNP case, z is trun-
cated to a m-dimensional cone. Given the latent vec-
tor z, inference proceeds as would standard Bayesian
analysis of the underlying latent multivariate regres-
sion model. For the linear multivariate regression
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model, exact analytic results are available for the pos-
terior of �����. Draws from the truncated multivari-
ate normal can easily be accomplished via one-by-one
draws from a series of univariate truncated normal
distributions (see McCulloch and Rossi 1994, Allenby
et al. 1995). This amounts to defining a subchain to
draw the truncated normal vector. What is important
to note is that by augmenting with the latent variable,
we have avoided evaluation of any choice probabili-
ties or other integrals of the multivariate normal. The
cost of computational simplification is an enlargement
of the state space for the Markov chain. In general,
this will cause the data-augmented MCMC method
to converge more slowly and exhibit higher auto-
correlation than the non-data-augmented sampler. In
the case of the MNP model, Nobile (1998) has indi-
cated that, under certain conditions, the standard aug-
mented Gibbs sampler can exhibit very high autocor-
relation and proposes an improved chain.
Thus, data augmentation provides a clever way of
avoiding evaluation of various multivariate integrals
at the possible expense of introducing high autocorre-
lation in to the MCMC method. Our experience, how-
ever, has shown that the basic MNP Gibbs sampler
works well and can handle problems for which the
method of simulated maximum likelihood grinds to
a halt.

4.2. Identification
The latent variable formulation provides a natural
mechanism for understanding the identification prob-
lem in these models. Identification problems stem
from the fact that various transformations of the
latent variables leave the observed censored outcome
variable unchanged. For example, recall that in the
MNP model the choice is made with the highest
latent value. There are two transformations that leave
the index of the maximum unchanged—location and
scale shifts (see McCulloch and Rossi 1999, for fur-
ther details). Identification can be achieved either
by imposing exact restrictions on the model param-
eters, or by employing informative priors on the full
parameter space and marginalizing on the identified
parameters.
In many classical and Bayesian approaches, the
approach to this scaling problem is to fix one of the

elements of the covariance matrix (typically, the (1, 1)
element) to one. For Bayesian methods, the restric-
tion of the covariance matrix makes it difficult to use
standard conjugate priors such as the Wishart prior.
McCulloch et al. (2000) show how to construct practi-
cal priors on the appropriate space of matrices.
However, Bayesians are not limited to exact restric-
tions as a way of solving various identification prob-
lems. Use of a proper prior distribution ensures that
the posterior is proper, even if the likelihood is
not identified. In a Bayesian analysis, the issue of
statistical identification shifts from an identified—not
identified dichotomy, to an issue of the degree of iden-
tification and to subspaces of the posterior distribu-
tion that are well identified. For example, we can use
a proper but diffuse prior in the unidentified param-
eter space, and simply marginalize or project down
on the space of identified parameters. The only added
cost of this procedure is making sure that the induced
prior on the identified quantities is sufficiently diffuse
to be usable in those situations in which we want our
inferences driven primarily by the data.
An even more striking example of the usefulness of
this idea of navigating in the full, unidentified space
can be found in the multivariate probit model. Here
the identified parameters consist only of the correla-
tion matrix of the latent variables because separate
scaling constants can be used for each element. Until
recently (see Barnard et al. 2000) convenient priors
for correlation matrices have not be available. Stan-
dard MCMC methods, such as Metropolis-Hastings,
are difficult to adapt to the highly restricted space of
valid correlation matrices (Manchanda et al. 1999). In
other words, it is hard to draw candidate correlation
matrices. As Edwards and Allenby (2002) illustrate,
all of this can be avoided by navigating in the uniden-
tified space and projecting down to the space of cor-
relation matrices (see also DeSarbo et al. 1999). These
algorithms are fast and reliable.
We have seen that disaggregate marketing data is
often lumpy, containing discrete mass points of prob-
ability. A natural framework for building models with
discrete aspects is to use an underlying continuous
latent variable, coupled with some sort of censoring
mechanism. Not only are latent variables useful for
generating models but also the new MCMC Bayesian
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inference methods nicely exploit the latent structure.
Finally, identification problems that are common in
latent variable models can be handled with great flex-
ibility in the Bayesian approach.

5. Across-Unit Analysis:
Incorporating Heterogeneity via
Hierarchical Models

The explosion in demand data available to marketers
comes from the increased availability of disaggregate
data. Scanner data at the store and household level
is now commonplace. In the pharmaceutical indus-
try, physician-level prescription data is now com-
monplace. This raises both modeling challenges, as
well as major opportunities for improved profitabil-
ity through decentralized marketing decisions that
exploit heterogeneity. This new data comes in panel
structure in which N , the number of units is large rel-
ative to T , the length of the panel. Thus, we may have
a large amount of data obtained by observing a large
number of decision units. For a variety of reasons, it
is unlikely that we will ever have a very large amount
of information about any one decision unit. In this
situation, it is useful to have a model that pools infor-
mation among the units. A flexible random effects
model, combined with Bayesian inference methods,
can produce accurate estimates at both the aggregate
and individual decision unit level.

5.1. Heterogeneity and Priors
A useful general structure for disaggregate data is
a panel structure in which the units are regarded
as independent, conditional on unit-level parameters.
Given a joint prior on the collection of unit-level
parameters, the posterior distribution can be written
as follows:

p��1� � � � � �N �y1� � � � � yN �

∝
[∏

i

p�yi ��i�

]
×p��1� � � � � �N � +��

The term in brackets is the conditional likelihood and
the rightmost term is the joint prior with hyperpa-
rameter, + . In many instances, the amount of infor-
mation available for many of the units is small. This

means that the specification of the functional form
and hyperparameter for the prior may be important
in determining the inferences made for any one unit.
A good example of this can be found in choice data
sets in which consumers are observed to be choos-
ing from a set of products. Many consumers (“units”)
do not choose all of the alternatives available during
the course of observation. In this situation, most stan-
dard choice models do not have a bounded maximum
likelihood estimate (the likelihood has an asymptote
in a certain direction in the parameter space). In this
situation, the prior is, in large part, determining the
inferences made for these consumers.
Assessment of the joint prior for ��1� � � � � �N � is dif-
ficult, due to the high dimension of the parameter
space and, therefore, some sort of simplification of
the form of the prior is required. One frequently
employed simplification is to assume that, conditional
on the hyperparameter, ��1� � � � � �N � are a priori inde-
pendent.

p��1� � � � � �N �y1� � � � � yN �∝∏
i

p�yi ��i�p��i � +��

This means that inference for each unit can be con-
ducted independently of all other units conditional
on + . This is the Bayesian analogue of fixed-effects
approaches in classical statistics.
The specification of the conditionally independent
prior can be very important, due to the scarcity of
data for many of the units. Both the form of the prior
and the values of the hyperparameters are important
and can have pronounced effects on the unit-level
inferences. For example, it is common to specify a
normal prior, �i ∼ N��̄�V��. The normal form of this
prior means that influence of the likelihood for each
unit may be attenuated for likelihoods centered far
away from the prior. That is, the thin tails of the nor-
mal distribution diminish the influence of outlying
observations. In this sense, the specification of a nor-
mal form for the prior, whatever the values of the
hyperparameters, is far from innocuous.
Assessment of the prior hyperparameters can also
be challenging in any applied situation. For the case
of the normal prior, some relatively diffuse prior may
be a reasonable default choice. Rossi and Allenby
(1993) use a prior, based on a scaled version of the
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pooled model information matrix. The prior covari-
ance is scaled back to represent the expected informa-
tion in one observation to insure a relatively diffuse
prior. Use of this sort of normal prior will induce a
phenomenon of “shrinkage” in which the Bayes esti-
mates (posterior means) %�̃i = E	�i �datai�prior
& will
be clustered more closely to the prior mean than the
unit-level maximum likelihood estimates %�̂i&. For dif-
fuse prior settings, the normal form of the prior will
be responsible for the shrinkage effects. In particu-
lar, outliers will be “shrunk” dramatically toward the
prior mean. For many applications, this is a very
desirable feature of the normal form prior. We will
“shrink” the outliers in toward the rest of the param-
eter estimates and leave the rest pretty much alone.

5.2. Hierarchical Models
In general, however, it may be desirable to have the
amount of shrinkage induced by the priors driven by
information in the data. That is, we should “adapt”
the level of shrinkage to the information in the data
regarding the dispersion in %�i&. If, for example, we
observe that the %�i& are tightly distributed about
some location or that there is very little information
in each unit-level likelihood, then we might want
to increase the tightness of the prior so that the
shrinkage effects are larger. This feature of “adap-
tive shrinkage” was the original motivation for work
by Efron and Morris (1975) and others on empiri-
cal Bayes approaches in which prior parameters were
estimated. These empirical Bayes approaches are an
approximation to a full Bayes approach in which we
specify a second-stage prior on the hyperparameters
of the conditional independent prior. This specifica-
tion is called a hierarchical Bayes model and con-
sists of the unit-level likelihood and two stages of
priors.
Likelihood: p�yi ��i�

First-stage prior: p��i � +�
Second-stage prior: p�+ �h�.

The joint posterior for the hierarchical model is given
by

p��1� � � � � �m� + �y1� � � � � ym�h�

∝
[∏

i

p�yi ��i�p��i � +�
]
×p�+ �h��

In the hierarchical model, the prior induced on the
unit-level parameters is not an independent prior.
The unit-level parameters are conditionally, but not
unconditionally, a priori independent.

p��1� � � � � �m �h�=
∫ ∏

i

p��i � +�p�+ �h�d+�

If, for example, the second-stage prior on + is very
diffuse, the marginal priors on the unit-level parame-
ters, �i, will be highly dependent, as each parameter
has a large common component.
The hierarchical model specifies that both prior and
sample information will be used to make inferences
about the common parameter, + . For example, in nor-
mal prior, �i ∼N��̄�V��, the common parameters pro-
vide the location and the spread of the distribution
of �i. Thus, the posterior for the �i will reflect a level
of shrinkage inferred from the data. It is important to
remember, however, that the normal functional form
will induce a great deal of shrinkage for outlying
units, even if the posterior of V� is centered on large
values.

5.3. Inference for Hierarchical Models
Hierarchical models for panel data structures are
ideally suited for MCMC methods. In particular, a
“Gibbs”-style Markov chain can often be constructed
by considering the basic two sets of conditionals:
(1) �i � +�yi

and
(2) + � %�i&

The first set of conditionals exploits the fact that
the �i are conditionally independent. The second set
exploits the fact that %�i& are sufficient for + . That is,
once the %�i& are drawn from (1), these serve as “data”
to the inferences regarding + . If, for example, the first-
stage prior is normal, then standard natural conjugate
priors can be used, and all draws can be done one-
for-one and in logical blocks. This normal prior model
is also the building block for other more complicated
priors. The normal model is given by

�i ∼ N��̄�V��

�̄ ∼ N� ¯̄��A−1�

V −1
� ∼ W�.�V ��
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In the normal model, the %�i& drawn from (1) are
treated as a multivariate normal sample and standard
conditionally conjugate priors are used. It is worth
noting that in many applications the second-stage pri-
ors are set to be very diffuse (A−1 = 100I or larger)
and the Wishart is set to have expectation I with very
small degrees of freedom such as dim���+ 3. As we
often have a larger number of units in the analysis, the
data seems to overwhelm these priors and we learn a
great deal about + , or in the case of the normal prior,
��̄�V��.
In classical approaches to these models, the first-
stage prior is called a random effects model and is
considered part of the likelihood. The random effects
model is used to average the conditional likelihood to
produce an unconditional likelihood which is a func-
tion of the common parameters alone.

l�+�=∏
i

∫
p�yi ��i�p��i � +�d�i�

In the classic econometric literature, much is made
of the distinction between random coefficient models
and fixed effect models. Fixed effect models are con-
sidered “nonparametric” in the sense that there is no
specified distribution for the �i parameters. Random
coefficient models are often consider more efficient,
but subject to specification error in the assumed ran-
dom effects distribution, p��i � +�. In a Bayesian treat-
ment, we see that the distinction between these two
approaches is in the formulation of the joint prior on
%�1� � � � � �m&.

5.4. Heterogeneity Distributions
Much of the work in both marketing and in the gen-
eral statistics literature has used the normal prior for
the first stage of the hierarchical model. The normal
prior offers a great deal of flexibility and fits con-
veniently with large Bayesian regression/multivariate
analysis literature. The standard normal model can
easily handle analysis of many units (Steenburgh
et al. 2002), and can be extended to include observ-
able determinants of heterogeneity (see Allenby and
Ginter 1995, Rossi et al. 1996, Talukdar et al. 2002).
This can be done by introducing a multivariate regres-

sion in the observables into the mean function

� = Bz+u

u ∼ N�0�V���

Here, z is a vector of explanatory variables that are
meant to explain across-unit differences. Typically, we
might postulate that various demographic or mar-
ket characteristics might explain differences in inter-
cepts (brand preference) or slopes (marketing mix
sensitivities). In linear models, these normal prior
specifications amount to specifying a set of interac-
tions between the explanatory variables in the model
explaining y (see McCulloch and Rossi 1994, for fur-
ther discussion of this point).
While the normal model is flexible, there are sev-
eral drawbacks for marketing applications. As dis-
cussed above, the thin tails of the normal model tend
to shrink outlying units greatly toward the center of
the data. While this may be desirable in many appli-
cations, it is a drawback in discovering new struc-
ture in the data. For example, if the distribution of
the unit-level parameters is bimodal (something to
be expected in models with brand intercepts), then a
normal first-stage prior may shrink the unit-level esti-
mates to such a degree as to mask the multimodality
(see below for further discussions of diagnostics). For-
tunately, the normal model provides a building block
for a mixture of normals extension of the first-stage
prior. The mixture of normals model can be written

p�� � �̄1� � � � � �̄K�V1� � � � �VK�

= r11�� � �̄1�V1�+· · ·+ rK1�� � �̄K�VK�#∑
rk = 1�

It is well-known that the mixture of normals model
provides a great deal of flexibility and that with
enough components, virtually any multivariate den-
sity can be approximated. In particular, multiple
modes are possible. Fatter tails than the normal can
also be accommodated by mixing in normal compo-
nents with large variance.
The mixture of normals model can be viewed as
a generalization of the popular finite mixture model.
The finite mixture model views the prior as a discrete
distribution with a set of mass points. This approach

Marketing Science/Vol. 22, No. 3, Summer 2003 313



ROSSI AND ALLENBY
Bayesian Statistics and Marketing

has been very popular in marketing, due to the inter-
pretation of each mixture point as representing a
“segment” and to the ease of estimation. In addition,
the finite mixture approach can be given the interpre-
tation of a nonparametric method as in Heckman and
Singer (1982). Critics of the finite mixture approach
have pointed to the implausibility of the existence of
a small number of homogeneous segments, as well
as the fact that the finite mixture approach does not
allow for extreme units whose parameters lie outside
the convex hull of the support points. The mixture of
normals approach avoids the drawbacks of the finite
mixture model, while incorporating many of the more
desirable features.
The MCMC algorithm for the normal heterogeneity
model can easily be extended to handle the mixture
of normals model by appending indicator variables
for the mixture component to the state space. Con-
ditional on the indicator variables, the draws of the
normal component parameters are standard conjugate
draws given the classification of the observations into
one of the K components. The indicator variables,
conditional on all other parameters, have a multi-
nomial distribution with probabilities proportional to
the number of units assigned to the component and
the likelihood that the unit’s parameters are from the
component distribution.
In mixture of components models, there is a generic
identification problem, generally known as the label-
switching problem. A model with a given sequence
of component parameters is observationally equiva-
lent to any permutations of this sequence of parame-
ters. Component labels, therefore, require identifying
restrictions for inference to occur. One solution to this
problem is to put informative priors on the model
parameters (e.g., �̄1 > �̄2 > · · ·> �̄K�, which works well
when the data are in agreement with the restriction.
However, if the data are not in agreement (e.g., the
components primarily differ in V , not �̄�, then the
prior can lead to a chain that is slow to converge
(Frühwirth-Schnatter et al. 2003). It should be noted,
however, that the presence of label-switching does
not affect inference about parameters of a particular
unit, �i. If the normal component mixing distribution
is seen as a flexible device for approximating some
unknown heterogeneity distribution, then inference

about the distribution of heterogeneity can be made
directly with the set of unit parameters, %�i&, with-
out attempting to identify or estimate the component
parameters.
In many situations, we have prior information on
the signs of various coefficients in the base model. For
example, price parameters are negative and advertis-
ing effects are positive. In a Bayesian approach, this
sort of prior information can be included by modify-
ing the first-stage prior. We replace the normal dis-
tribution with a distribution with restricted support,
corresponding to the appropriate sign restrictions. For
example, we can use a log-normal distribution for a
parameter which is restricted via sign by the repa-
rameterization, �′ = ln���. However, note that this
change in the form of the prior can destroy some of
the conjugate relationships which are exploited in the
Gibbs-sampler. However, if metropolis-style methods
are used to generate draws in the Markov chain, it
is a simple matter to directly reparameterize the like-
lihood function, by substituting exp(�′) for �, rather
than rely on the heterogeneity distribution to impose
the range restriction. What is more important is to
ask whether the log-normal prior is appropriate. The
left tail of the log-normal distribution declines to zero,
insuring a mode for the log-normal distribution at
a strictly positive value. For situations in which we
want to admit zero as a possible value for the param-
eter, this prior may not be appropriate. Boatwright
et al. (1999) explore the use of truncated normal pri-
ors as an alternative to the log-normal reparameter-
ization approach. Truncated normal priors are much
more flexible, allowing for mass to be piled up at zero.
Bayesian models can also accommodate struc-
tural heterogeneity, or changes in the likelihood
specification for a unit of analysis. The likelihood is
specified as a mixture of likelihoods:

p�yit � %�ik&�= r1p1�yit ��i1�+· · ·+ rKpK�yit ��iK��

and estimation proceeds by appending indicator vari-
ables for the mixture component to the state space.
Conditional on the indicator variables, the datum, yit ,
is assigned to one of K likelihoods. The indicator
variables, conditional on all other parameters, have
a multinomial distribution with probabilities propor-
tional to the number of observations assigned to the

314 Marketing Science/Vol. 22, No. 3, Summer 2003



ROSSI AND ALLENBY
Bayesian Statistics and Marketing

component, and the probability that the datum arise
from likelihood. Models of structural heterogeneity
have been used to investigate intraindividual change
in the decision process due to environmental changes
(Yang and Allenby 2000) and fatigue (Otter et al.
2003).
Finally, Bayesian methods have recently been used
to relax the commonly made assumption that the unit
parameters, �i, are i.i.d. draws from the distribution
of heterogeneity. Ter Hofstede et al. (2002) employ a
conditional Gaussian field specification to study spa-
tial patterns in response coefficients:

p��i � +�= p��i � %�j 3 j ∈ Si&�V���

where Si denotes units that are spatially adjacent to
unit i. Since the MCMC estimation algorithm employs
full conditional distributions of the model parame-
ters, the draw of �i involves using a local average
for the mean of the mixing distribution. Yang and
Allenby (2002b) employ a simultaneous specification
of the unit parameters to reflect the possible presence
of interdependent effects, due to the presence of social
and information networks.

� = 5W�+u

u∼ N�0�62I��

where W is a matrix that specifies the network, 5, is a
coefficient that measures the influence of the network,
and u is an innovation.

5.5. Diagnostic Checks of the First-Stage Prior
In the hierarchical model, the prior is specified in a
two stage process:

� ∼ N��̄�V��

p��̄V���

In the classical literature, the normal distibution of �
would be called the random effects model and would
be considered part of the likelihood, rather than part
of the prior. Typically, very diffuse priors are used for
the second stage. Thus, it is the first-stage prior which
is important, and will always remain important, as
long as there are only a few observations available
per household. Since the parameters of the first-stage

prior are inferred from the data, the main focus of
concern should be on the form of this distribution.
In the econometric literature, the use of parametric
distributions of heterogeneity (e.g., normal distribu-
tions) are often criticized on the grounds that their
misspecification leads to inconsistent estimates of the
common model parameters (cf. Heckman and Singer
1982). For example, if the true distribution of house-
hold parameters were skewed or bimodal, our infer-
ences based on a symmetric, unimodal normal prior
could be misleading. One simple approach would be
to plot the distribution of the posterior household
means and compare this to the implied normal distri-
bution evaluated at the Bayes estimates of the hyper-
parameters, N�E	�̄ �data
�E	V�
�. The posterior means
are not constrained to follow the normal distribu-
tion because the normal distribution is only part of
the prior and the posterior is influenced by the unit-
level data. This simple approach is in the right spirit
but could be misleading due to the fact that we do
not properly account for uncertainty in the unit-level
parameter estimates.
Allenby and Rossi (1999) provide a diagnostic check
of the assumption of normality in the first stage
of the prior distribution that properly accounts for
parameter uncertainty. To handle uncertainty in our
knowledge of the common parameters of the normal
distribution, we compute the predictive distribution
of �i′ for unit i′, selected at random from the popu-
lation of households with the random effects distri-
bution. Using our data and model, we can define the
predictive distribution of �i′ as follows:

�i′ �data =
∫∫

(�� � �̄�V��p��̄�V� �data� d�̄ dV��

Here (��i′ � �̄�V�� is the normal prior distribution.
We can use our MCMC draws of �̄� V�, coupled
with draws from the normal prior, to construct an
estimate of this distribution. The diagnostic check is
constructed by comparing the distribution of the unit-
level posterior means to the predictive distribution
based on the model given above.

5.6. Findings and Influence on Marketing Practice
The last ten years of work on heterogeneity in
marketing has yielded several important findings.
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Researchers have explored a rather large set of first-
stage models with a normal distribution of het-
erogeneity across units. In particular, investigators
have considered a first-stage normal linear regres-
sion (Blattberg and George 1991), a first-stage logit
model (Allenby and Lenk 1994, 1995), a first-stage pro-
bit (McCulloch and Rossi 1994), a first-stage Poisson
(Neelamegham and Chintagunta 1999), and a first-
stage generalized gamma distribution model (Allenby
et al. 1999, Jen et al. 2003). The major conclusion is that
there is a substantial degree of heterogeneity across
units in various marketing data sets. This finding of
a large degree of heterogeneity holds out substantial
promise for the study of preferences, both in terms
of substantive and practical significance (Ansari et al.
2000). There may be substantial heterogeneity bias
in models that do not properly account for hetero-
geneity (Chang et al. 1999), and there is large value
in customizing marketing decisions to the unit level
(see Rossi et al. 1996).
Yang et al. (2002a) investigate the source of brand
preference, and find evidence that variation in the
consumption environment, and resulting motivations,
leads to changes in a unit’s preference for a product
offering (see also, Arora and Allenby 1999). Motivat-
ing conditions are an interesting domain for research,
as they preexist the marketplace, offering a measure
of demand that is independent of marketplace offer-
ings. Other research has documented evidence that
the decision process employed by a unit is not nec-
essarily constant throughout a unit’s purchase (Yang
and Allenby 2000) and response (Otter et al. 2003) his-
tory. This evidence indicates that the appropriate unit
of analysis for marketing is at the level that is less
aggregate than a person or respondent, although there
is evidence that household sensitivity to marketing
variables (Ainslie and Rossi 1998) and state depen-
dence (Seetharaman et al. 1999) is constant across
categories.
The normal continuous model of heterogeneity
appears to do reasonably well in characterizing this
heterogeneity, but there has not yet been sufficient
experimentation with alternative models, such as the
mixture of normals, to draw any definitive conclu-
sions (see Allenby et al. 1998). With the relatively

short panels typically found in marketing applica-
tions, it may be difficult to identify much more
detailed structure beyond that afforded by the normal
model. In addition, relatively short panels may pro-
duce a confounding of the finding of heterogeneity
with various model misspecifications in the first stage.
If only one observation is available for each unit, then
the probability model for the unit level is the mixture
of the first-stage model with the second-stage prior:

p�y � +�=
∫

p�y ���p�� � +�d��

This mixing can provide a more flexible probability
model. In the one observation situation, we can never
determine whether it is “heterogeneity,” or lack of
flexibility that causes the Bayesian hierarchical model
to fit the data well. Obviously, with more than one
observation per unit, this changes, and it is possi-
ble to separately diagnose first-stage model problems
and deficiencies in the assumed heterogeneity distri-
bution. However, with short panels there is unlikely
to be a clean separation between these problems, and
it may be the case that some of the heterogeneity
detected in marketing data is really due to lack of
flexibility in the base model.
There have been some comparisons of the nor-
mal continuous model with the discrete approxima-
tion approach of a finite-mixture model. It is our
view that it is conceptually inappropriate to view
any population of units as being comprised of only
a small number of homogeneous groups and, there-
fore, the appropriate interpretation of the finite mix-
ture approach is an approximation method. Allenby
and Rossi (1999) and Lenk et al. (1996) show some
of the shortcomings of the finite-mixture model, and
provide some evidence that the finite-mixture model
does not recover reasonable unit-level parameter esti-
mates. In contrast, Andrews et al. (2002) use sim-
ulated data to suggest that unit-level recovery is
comparable between the normal- and finite-mixture
approaches.
At the same time that the Bayesian work in the
academic literature has shown the ability to produce
unit-level estimates, there has been increased inter-
est on the part of practitioners in unit-level analysis.
Conjoint researchers have always had an interest in
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respondent-level part-worths and had various ad hoc
schemes for producing these estimates. Recently, the
Bayesian hierarchical approach to the logit model has
been implemented in the popular Sawtooth conjoint
software. Experience with this software and simula-
tion studies have lead Rich Johnson, Sawtooth soft-
ware’s founder, to conclude that Bayesian methods
are superior to others considered in the conjoint liter-
ature (Sawtooth Software 2001).
Retailers are amassing volumes of store-level
scanner data. Not normally available to academic
researchers, this store-level data is potentially useful
for informing the basic retail decisions such as pric-
ing and merchandizing. Attempts to develop reliable
models for pricing and promotion have been frus-
trated by the inability to produce reliable promotion
and price response parameters. Thus, the promise of
store-level pricing has gone unrealized. Recently, a
number of firms, including the leader DemandTec,
have appeared in this space, offering data-based pric-
ing and promotion services to retail customers. At the
heart of DemandTec’s approach is a Bayesian shrink-
age model applied to store-sku-week data, obtained
directly from the retail client. The Bayesian shrink-
age methods allow DemandTec to produce reasonable
and relatively stable store-level parameter estimates.
DemandTec builds on the approach of Montgomery
(1997).

6. Decision Theory
The vast majority of the recent Bayesian literature
in marketing emphasizes the value of the Bayesian
approach to inference, particularly in situations with
limited information. Bayesian inference is only a
special case of the more general Bayesian decision
theoretic approach. Bayesian decision theory has two
critical and separate components: (1) a loss function,
and (2) the posterior distribution. The loss function
associates a loss with a state of nature and a action,
l�a� ��, where a is the action and � is the state of nature
(parameter). The optimal decision maker chooses the
action so as to minimize expected loss, where the
expectation is taken with respect to the posterior dis-
tribution.

min
a

l̄�a�=
∫

l�a� ��p�� �data� d��

Parameter inference is a simple case of the general
decision theory set-up, in which the loss is often taken
to be quadratic. In this case, the optimal “action” is
an estimator taken to be the posterior mean of the
parameters.

6.1. Model Selection
In many scientific settings, the action is a choice
between competing models. In the Bayesian
approach, it is possible to define a set of models
M1� � � � �Mk, and calculate a measure of the posterior
probability of a model. If the loss function is zero
when the correct model is chosen and equal for all
cases in which the incorrect model is chosen, then the
optimal Bayesian decision maker chooses the model
with the highest posterior probability. In a parametric
setting, the posterior probability of a model can be
calculated as follows:

p�Mk �D�= p�D �Mk�p�Mk�

p�D �Mk�=
∫

p�D ���Mk�pk���d��

where D denotes the “data.” In the Bayesian
approach, the posterior probability only requires spec-
ification of the class of models and the priors. There
is no distinction between nested and nonnested mod-
els as in the hypothesis-testing literature in the classi-
cal literature. However, we do require specification of
the class of models under consideration; there is no
omnibus measure of the plausibility of a given model
or group of models versus some unspecified, and pos-
sibly unknown, set of alternative models.
In situations where two models are being com-
pared, it is common to compute the ratio of posterior
model probabilities. This ratio can be expressed as the
ratio of average likelihoods times the prior odds ratio.
The ratio of average likelihood is sometimes called
the Bayes factor for a model.

p�M1 �D�

p�M2 �D�
=

∫
l1��1�p1��1� d�1∫
l2��2�p2��2� d�2

× p�M1�

p�M2�
�

The Bayes factor can be quite sensitive to the prior
specification and, in particular, to the prior diffusion.
As the prior becomes more and more spread out, rel-
ative to the fixed likelihood, the average value of the
likelihood declines. Thus, if the prior for Model 1 is a
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great deal more spread out than the prior for Model 2,
this may result in Bayes factors which favor Model 2
(this is certainly true in a limiting sense). In particular,
diffuse and improper priors can result in undefined
Bayes factors. We recommend that close attention be
placed on the prior assessment and that prior sen-
sitivity analysis be performed whenever computing
posterior model probabilities.
A wide variety of methods have been proposed
to approximate the posterior model probability. The
most widely used method is due to Schwarz (1978),
who computed an asymptotic approximation that
depends only on the dimension of the model. This is
the idea behind the well-known Schwarz or Bayesian
Information Criterion (BIC) for model choice. Except
for very special forms of priors, the Schwarz method
is extremely inaccurate and should not be relied on
for computation of the posterior model probability.
Various numerical methods that rely on either the
Laplace approximation or importance sampling meth-
ods of numerical integration are the preferred method
of approximation. In particular, Newton and Raftery
(1994) offer a convenient method for approximating a
Bayes factor using MCMC simulation draws to esti-
mate the average likelihood as the harmonic mean of
the likelihoods of a sample from the posterior distri-
bution. This estimator is consistent but may be unsta-
ble due to draws of the parameters that are associated
with small likelihood values.

6.2. Marketing Decisions and Bayesian
Decision Theory

Bayesian decision theory is ideally suited for appli-
cation to many marketing problems in which a deci-
sion must be made, given substantial parameter or
modeling uncertainty. In these situations, the uncer-
tainty must factor into the decision itself. The mar-
keting decision maker takes an action by setting the
value of various variables designed to quantify the
marketing environment facing the consumer (such as
price or advertising levels). These decisions should be
affected by the level of uncertainty facing the mar-
keter. To make this concrete, begin with a probabil-
ity model that specifies how the outcome variable

�y� is driven by the explanatory variables �x� and
parameters �.

p�y �x����
The decision maker has control over a subset of the
x vector, x′ = 	x′

d� x
′
cov
. xd represents the variables

under the decision maker’s control and xcov are the
covariates. The decision maker chooses xd so as to
maximize the expected value of profits where the
expectation is taken over the distribution of the out-
come variable. In a fully Bayesian decision theoretic
treatment, this expectation is taken with respect to the
posterior distribution of �, as well as the predictive
conditional distribution p�y �xd�xcov�.

:∗�xd �xcov� = E�	Ey ��	:�y �xd�



= E�

[∫
:�y �xd�p�y �xd�xcov� ��dy

]

= E�	:̄�xd �xcov� ��
�
The decision maker chooses xd to maximize profits
:∗. In general, the decision maker can be viewed as
minimizing expected loss, which is frequently taken
as profits but need not be in all cases (see, for exam-
ple, Steenburgh et al. 2002)

6.3. Plug-In vs. Full Bayes Approaches
The use of the posterior distribution of the model
parameters to compute expected profits is an impor-
tant aspect of the Bayesian approach. In an approxi-
mate, or conditional, Bayes approach, the integration
of the profit function with respect to the posterior dis-
tribution of � is replaced by an evaluation of the func-
tion at the posterior mean or mode of the parameters.
This approximate approach is often called the “plug-
in” approach, or according to Morris (1983), Bayes
Empirical Bayes.

:∗�xd�= E��y	:̄�xd ���
 �= :̄�xd � �̂ = E��y	�
��

When the uncertainty in � is large and the profit
function is nonlinear, errors from the use of the
plug-in method can be large. In general, failure to
account for parameter uncertainty will overstate the
potential profit opportunity and lead to “overconfi-
dence” that results in an overstatement of the value of
information (see also Allenby 1990b, Kalyanam 1996,
Montgomery and Bradlow 1999).
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6.4. Use of Alternative Information Sets
One of the most appealing aspects of the Bayesian
approach is the ability to incorporate a variety of dif-
ferent sources of information. All adaptive shrinkage
methods utilize the similarity between cross-sectional
units to improve inference at the unit level. A high
level of similarity among units leads to a high level
of information shared. Because the level of similarity
is determined by the data via the first-stage prior, the
shrinkage aspects of the Bayesian approach adapt to
the data. For example, Neelameghan and Chintagunta
(1999) show that similarities between countries can be
used to predict the sales patterns following the intro-
duction of new products.
The value of a given information set can be
assessed using a profit metric and the posteriors of �,
corresponding to the two information sets. For exam-
ple, consider two information sets A and B, along
with corresponding posteriors, pA���� pB���. We solve
the decision problem using these two posterior distri-
butions.

;l =max
xd

:∗
l �xd �xcov�=max

xd

∫
:̄�xd �xcov� ��pl��� d�

l =A�B�

Rossi et al. (1996) use this approach to value various
information sets available on individual households.
A targeting couponing problem that anticipated the
now popular Catalina Marketing Inc. products was
used to value a sequence of expanding individual
level information sets. We now turn to the problem
of valuing disaggregate information.

6.5. Valuation of Disaggregate Information
Once a fully decision-theoretic approach has been
specified, we can use the profit metric to value the
information in disaggregate data. We compare profits
that can be obtained via our disaggregate inferences
about %�i& with profits that could be obtained using
only aggregate information. The profit opportunities
afforded by disaggregate data will depend on both
the amount of heterogeneity across the units in the
panel data, as well as the level of information at the
disaggregate level.
To make these notions explicit, we will lay out
the disaggregate and aggregate decision problems.

As emphasized in §3, Bayesian methods are ideally
suited for inference about the individual or disaggre-
gate parameters, as well as the common parameters.
Recall the profit function for the disaggregate decision
problem.

:∗
i �xd� i �xcov� i�=

∫
:̄�xd� i �xcov� i� �i�p��i �data� d�i�

Here, we take the expectation with respect to the pos-
terior distribution of the parameters for unit “i.” Total
profits from the disaggregate data are simply the sum
of the maximized values of the profit function above.

;disagg =
∑

:∗
i �x̃d� i �xcov� i�

where x̃d� i is the optimal choice of xd� i�

Aggregate profits can be computed by maximizing
the expectation of the sum of the disaggregate profit
functions with respect to the predictive distribution
of �i

:agg�xd� = E�

[∑
:̄�xd �xcov� i� ��

]

=
∫ ∑

:̄�xd �xcov� i� ��p̄��� d�
;agg = :agg�x̃d��

The appropriate predictive distribution of �� p̄���, is
formed from the marginal of the first-stage prior with
respect to the posterior distribution of the model
parameters.

p̄���=
∫

p�� � +�p�+ �data� d+�

Comparison of ;agg with ;disagg provides a metric for
the achievable value of the disaggregate information.

7. Open Issues and Directions for
Future Research

Researchers have long noted the conceptual appeal
of the Bayesian framework for inference and deci-
sion making. However, the potential of the Bayesian
approach was not realized due to computational con-
straints. Without modern simulation-based methods,
researchers were restricted to a short list of likelihoods
and associated conjugate priors. The developments
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of the last 15 years have freed us from computation
constraints, allowing for the analysis of virtually any
model. We now can consider models once thought
to be impossible to compute, and we can use pri-
ors of virtually any form. The only constraint now,
is the ability of the data to identify model param-
eters, rather than the ability of the analyst to conduct
inference for this model. However, the recent devel-
opments have an even more profound impact than
simply freeing us from computational constraints. The
nature of the MCMC methods emphasize a modular-
ity in the construction of models, typically achieved
through a combination of conditional distributions.
These conditional distributions specify the nature
of the relationships between observed variables and
allow for the construction of more complicated rela-
tionships. Thus, the researcher can create a more com-
plex model simply by adding layers to the hierarchy.
Consider, as a simple example, the relationship
between sales and price. Much attention has been
devoted to fitting the conditional distribution of sales
�y� given price �x�. However, the actual decision pro-
cess is certainly not well represented by one condi-
tional distribution. Many endorse the concept of a
latent consideration set (Chiang et al. 1999) in which
a product must first be included in the consideration
set before a consumer evaluates the impact of price.
If w represents the consideration set, then the model
has been enlarged to the two layers y �w� x, and w �z,
where the consideration set is influenced by another
variable z (e.g., advertising). In the end, the hierar-
chical model specifies a special form for the condi-
tional distribution of y �x� z that allows exploration of
the intermediary conditional relationships. Moreover,
the specification of hierarchical conditional models is
consistent with process models of consumer behavior
(e.g., McFadden 2001).
Consideration sets are only one example of a latent
process that intervenes between the measurements
of the marketing mix variables and the sales out-
come variable. Other important examples include
price search and consumption. In typical demand
data, we do not observe the consumption of goods but
merely their purchases. In much demand modeling
in marketing, this distinction is glossed over, and the
demand model is based on a utility function defined

directly on the purchase quantities. Models that
explicitly recognize that purchases are made in antic-
ipation of future consumption have recently received
attention. For example, Dube (2003) explains simulta-
neous purchases of different varieties via anticipation
of changes in tastes over future consumption occa-
sions. Yang et al. (2002) consider a model in which
the utility derived from goods is dependent on the
context of consumption. Erdem and Keane (2003) con-
sider dynamic models of consumer demand in which
households stockpile goods for future consumption.
All of these models are amenable to Bayesian analy-
sis via data augmentation in which latent variables,
such as consumption, are introduced into the infer-
ence procedures.
Price search models are another example of a latent
process of great importance in marketing. Consumers
are not always fully informed about the prices of
choice alternatives and must engage in price search.
We do not observe this price search process directly
but only the outcomes. In a classical approach, such
as Mehta and Srinivasan (2003), the likelihood for
the search model must be evaluated by integrating
over all possible search paths. In a data augmenta-
tion approach, this integration can be achieved by
introduction of latent variables that represent search
possibilities. In an MCMC method for navigating
the posterior distribution of search parameters and
latent variables, we do not enumerate all possible
search paths but, instead, navigate among paths of
high posterior probability. We believe that MCMC
approaches, together with data augmentation, hold
great promise for analyzing models with very large
latent state spaces such as price search models and
discrete dynamic programming models, in general.
Many models of consumer behavior include
threshold-like effects. For example, some models of
consideration set formation have screening rules in
which a threshold level of an attribute is defined. The
threshold levels are unobservable parameters, and the
likelihood over these parameters has discontinuities.
This rules out the use of standard derivative-based
maximization methods. MCMC methods simply
require draws from various conditional posterior dis-
tributions in order to navigate the parameter space.
Drawing from a distribution with a density that is not
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continuous poses no special difficulties. Gilbride and
Allenby (2003) illustrate how this can be implemented
for choice models with conjunction and disjunctive
screening rules. These developments open many pos-
sibilities for analysis of models with threshold com-
ponents.
Thus, hierarchical modeling methods achieve not
only a great flexibility as emphasized in the Bayesian
statistics literature, but also they are well-suited to
the elaboration of various latent process views of
consumer behavior and decision making. We expect
research in marketing to focus on a better understand-
ing of the process by which the consumer makes buy-
ing decisions, in hopes of creating more realistic, yet
still parsimonious, models of behavior.
A major challenge facing marketing practitioners is
the merging of information acquired across a vari-
ety of different datasets. For example, a firm may
have access to consumer purchase information, sur-
vey information on a subsample of consumers, and
syndicated aggregate sales information. Marketplace
and survey data cannot be combined without some
view to the processes by which consumers make
buying decisions and respond to survey instruments.
Bayesian methods will facilitate the integration of
these data sources through the specification of a
common set of behavioral parameters and the pro-
cesses by which these are translated into either survey
responses or purchase decisions.
The observational data used in much of quanti-
tative marketing is derived from an environment in
which the outcome and input variables are jointly
determined. Marketing mix variables are set by man-
agers with a view toward optimizing some objective
function that includes the dependent variable. For
example, prices may be set with some knowledge of
either price sensitivity or price demand shocks. Direct
marketing response data is obtained from samples of
consumers who were selected in a nonrandom fash-
ion, with a view toward maximizing response rates
or profitability. Sales forces are allocated using some
sort of heuristic that attempts to create an optimal
allocation in which the marginal benefit of further
effort is equated to marginal cost. This means that we
cannot model just the conditional distribution of the
outcome variable, given the marketing mix variables,

but that we must consider the joint distribution of all
variables.
The joint determination of both outcome and input
variables poses considerable challenges for statistical
inference and modeling. Manchanda et al. (2003) con-
sider sales force problems in which the level of sales
force effort at a given account is a function of sales
response parameters. Price endogeneity is another
example of a challenging problem that involves deriv-
ing the joint distribution of price, sales, and possi-
ble exogeneous variables. Computational difficulties
have limited the use of likelihood-based methods and,
instead, instrumental variables procedures have been
commonly employed. We believe there is substan-
tial room for improvement in this area by the use of
likelihood-based Bayesian approaches. As an exam-
ple, consider a model of demand and supply in which
there are cost shocks and a common demand shock
that is used by retailers in setting prices. This model
has a likelihood that is the joint distribution of price
and quantity sold. This joint distribution is derived
from the distribution of costs shocks and demand
shocks. While the mapping from shocks to observ-
ables is an implicit nonlinear system of equations,
there is no conceptual difficulty with implementing
a metropolis algorithm for this system. The modu-
larity of the metropolis style MCMC method means
that elaborating the model by adding, for example,
consumer heterogeneity, is straightforward (see Yang
et al. 2003).

8. Conclusion
We have emphasized the value of Bayesian meth-
ods in situations with limited information. While
the total amount of data available has exploded, the
amount of information about any one consumer is
likely to remain limited. The customization of mar-
keting actions to finer and finer levels of aggregation
requires the ability to make inferences in conditions
of limited information and to characterize the level
of uncertainty in these inferences. Thus, we expect
Bayesian methods will play a critical role in realiz-
ing the potential of micromarketing and any analysis
conducted at a microlevel.

Marketing Science/Vol. 22, No. 3, Summer 2003 321



ROSSI AND ALLENBY
Bayesian Statistics and Marketing

Finally, there are a number of important problems
in marketing that are essentially pure prediction prob-
lems. Given a set of information on a consumer,
the prediction problem is to predict the response
to a given configuration of the marketing environ-
ment. Information available about the consumer can
be summarized with a huge set of potential vari-
ables. The marketing environment itself can also be
summarized in many possible ways. One important
applied problem is to sift through a large number of
possible variables and functional forms to find the
best possible prediction rule. In the Bayesian statis-
tics literature, there has been substantial progress in
the “variable selection” problem, and we believe these
methods have great promise for application to mar-
keting problems.
Structural or process-oriented approaches to mod-
eling achieve the prediction goal via a specification
of the decision process. This guides in the selec-
tion of variables and in the structure of relationships
between variables. However, structural theories are
typically silent on the exact parametric form of func-
tional relationships or distributions. Again, there is
an opportunity for application of Bayesian nonpara-
metric methods to the structural approach as well
(Kalyanam and Shively 1998, Shively et al. 2000).
In summary, Bayesian statistical methods offer an
appealing set of tools to researchers in marketing.
The Bayesian approach offers an integrated view of
inference and decision making that is applicable to
both theoretical and applied analysis. Moreover, the
hierarchical modeling structure that is exploited in
MCMC estimation methods is congruent with the-
ories of behavior and offers a means of integrat-
ing information across multiple data sources. Finally,
the computational advantages of Bayesian methods
allow for study of high-dimensional data and com-
plex relationships that are common in marketing. We
encourage our colleagues and students to experiment
with and apply Bayesian methods.
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Appendix: Annotated Citations of Bayesian
Applications in Marketing
This annotated bibliography represents the results of a search for
applications of Bayesian statistics in marketing. Only published
or forthcoming articles that feature marketing applications are
included.

Ainslie, Andrew, and Peter Rossi. 1998. Similarities in choice behav-
ior across product categories. Marketing Sci. 17 91–106.

A multi-category choice model is proposed where house-
hold response coefficients are assumed dependent across cat-
egory. The estimated distribution of heterogeneity reveals that
price, display, and feature sensitivity are not uniquely deter-
mined for each category but may be related to household-
specific factors.

Allenby, Greg M., Thomas Shively, Sha Yang, Mark J. Garratt. 2003.
A choice model for packaged goods: Dealing with discrete
quantities and quantity discounts. Marketing Sci. Forthcoming.

A method for dealing with the pricing of a product with
different package sizes is developed from utility-maximizing
principles. The model allows for the estimation of demand
when there exist a multitude of size-brand combinations.

Allenby, Greg M., Robert P. Leone, Lichung Jen. 1999. A dynamic
model of purchase timing with application to direct marketing.
J. Amer. Statist. Assoc. 94 365–374.

Customer interpurchase times modeled with a heteroge-
neous generalized gamma distribution, where the distribu-
tion of heterogeneity is a finite mixture of inverse generalized
gamma components. The model allows for structural hetero-
geneity where customers can become inactive.

Allenby, Greg M., Neeraj Arora, James L. Ginter. 1998. On the
heterogeneity of demand. J. Marketing Res. 35 384–389.

A normal component mixture model is compared to a finite
mixture model using conjoint data and scanner panel data. The
predictive results provide evidence that the distribution of het-
erogeneity is continuous, not discrete.

Allenby, Greg M., Lichung Jen, Robert P. Leone. 1996. Economic
trends and being trendy: The influence of consumer confidence
on retail fashion sales. J. Bus. Econom. Statist. 14 103–111.

A regression model with autoregressive errors is used to
estimate the influence of consumer confidence on retail sales.
Data are pooled across divisions of a fashion retailer to esti-
mate a model where influence has a differential impact on pre-
season versus in-season sales.

Allenby, Greg M., Peter J. Lenk. 1995. Reassessing brand loyalty,
price sensitivity, and merchandising effects on consumer brand
choice. J. Bus. Econom. Statist. 13 281–289.

The logistic normal regression model of Allenby and Lenk
(1994) is used to explore the order of the brand-choice process
and to estimate the magnitude of price, display, and feature
advertising effects across four scanner panel datasets. The evi-
dence indicates that brand-choice is not zero order, and mer-
chandising effects are much larger than previously thought.
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Allenby, Greg M., James L. Ginter. 1995. Using extremes to design
products and segment markets. J. Marketing Res. 32 392–403.

A heterogeneous random-effects binary choice model is
used to estimate conjoint part-worths using data from a tele-
phone survey. The individual-level coefficients available in
hierarchical Bayes models are used to explore extremes of the
heterogeneity distribution, where respondents are most and
least likely to respond to product offers.

Allenby, Greg M., Neeraj Arora, James L. Ginter. 1995. Incorpo-
rating prior knowledge into the analysis of conjoint studies.
J. Marketing Res. 32 152–162.

Ordinal prior information is incorporated into a conjoint
analysis using a rejection sampling algorithm. The resulting
part-worth estimates have sensible algebraic signs that are
needed for deriving optimal product configurations.

Allenby, Greg M., Peter J. Lenk. 1994. Modeling household pur-
chase behavior with logistic normal regression. J. Amer. Statist.
Assoc. 89 1218–1231.

A discrete choice model with autocorrelated errors and con-
sumer heterogeneity is developed and applied to scanner panel
dataset of ketchup purchases. The results indicate substan-
tial unobserved heterogeneity and autocorrelation in purchase
behavior.

Allenby, Greg M. 1990a. Hypothesis testing with scanner data: The
advantage of Bayesian methods. J. Marketing Res. 27 379–389.

Bayesian testing for linear restrictions in a multivariate
regression model is developed and compared to classical
methods.

Allenby, Greg M. 1990b. Cross-validation, the Bayes theorem, and
small-sample bias. J. Bus. Econom. Statist. 8 171–178.

Cross-validation methods that employ plug-in point
approximations to the average likelihood are compared to for-
mal Bayesian methods. The plug-in approximation is shown to
overstate the amount of statistical evidence.

Andrews, Rick, Asim Ansari, Imran Currim. 2002. Hierarchical
Bayes versus finite mixture conjoint analysis models: A com-
parison of fit, prediction, and partworth recovery. J. Marketing
Res. 87–98.

A simulation study is used to investigate the performance
of continuous and discrete distributions of heterogeneity in a
regression model. The results indicate that Bayesian methods
are robust to the true underlying distribution of heterogeneity,
and finite mixture models of heterogeneity perform well in
recovering true parameter estimates.

Ansari, Asim., Skander Essegaier, Rajeev Kohli. 2000. Internet rec-
ommendation systems. J. Marketing Res. 37 363–375.

Random-effect specifications for respondents and stimuli
are proposed within the same linear model specification. The
model is used to pool information from multiple data sources.

Ansari, Asim, Kamel Jedidi, Sharan Jagpal. 2000. A hierarchical
Bayesian methodology for treating heterogeneity in structural
equation models. Marketing Sci. 19 328–347.

Covariance matrix heterogeneity is introduced into a struc-
tural equation model, in contrast to standard models in
marketing, where heterogeneity is introduced into the mean
structure of a model. The biasing effects of not accounting for
covariance heterogeneity are documented.

Arora, Neeraj, Greg M. Allenby. 1999. Measuring the influence
of individual preference structures in group decision making.
J. Marketing Res. 36 476–487.

Group preferences differ from the preferences of individuals
in the group. The influence of the group on the distribution of
heterogeneity is examined using conjoint data on durable good
purchases by a husband’s, a wife’s, and their joint evaluation.

Arora, Neeraj, Greg M. Allenby, James L. Ginter. 1998. A hierarchi-
cal Bayes model of primary and secondary demand. Marketing
Sci. 17 29–44.

An economic discrete/continuous demand specification is
used to model volumetric conjoint data. The likelihood func-
tion is structural, reflecting constrained utility maximization.

Blattberg, Robert C., Edward I. George. 1991. Shrinkage estima-
tion of price and promotional elasticities: Seemingly unrelated
equations. J. Amer. Statist. Assoc. 86 304–315.

Weekly sales data across multiple retailers in a chain are
modeled using a linear model with heterogeneity. Price and
promotional elasticity estimates are shown to have improved
predictive performance.

Boatwright, Peter, Robert McCulloch, Peter E. Rossi. 1999. Account-
level modeling for trade promotion: An application of a con-
strained parameter hierarchical model. J. Amer. Statist. Assoc.
94 1063–1073.

A common problem in the analysis of sales data is that
price coefficients are often estimated with algebraic signs that
are incompatible with economic theory. Ordinal constraints are
introduced through the prior to address this problem, leading
to a truncated distribution of heterogeneity.

Bradlow, Eric T., David Schmittlein. 1999. The little engines that
could: Modeling the performance of World Wide Web search
engines. Marketing Sci. 19 43–62.

A proximity model is developed for analysis of the per-
formance of Internet search engines. The likelihood function
reflects the distance between the engine and specific URLs,
with the mean location of the URLs parameterized with a lin-
ear model.

Bradlow, Eric T., S. Fader. 2001. A Bayesian lifetime model for the
“Hot 100” Billboard songs. J. Amer. Statist. Assoc. 96 368–381.

A time series model for ranked data is developed using a
latent variable model. The deterministic portion of the latent
variable follows a temporal pattern described by a general-
ized gamma distribution, and the stochastic portion is extreme
value.
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Bradlow, Eric T., Vithala R. Rao. 2000. A hierarchical Bayes model
for assortment choice. J. Marketing Res. 37 259–268.

A statistical measure of attribute assortment is incorporated
into a random-utility model to measure consumer preference
for assortment beyond the effects from the attribute levels
themselves. The model is applied to choices between bundled
offerings.

Chiang, Jeongwen, Siddartha Chib, Chakravarthi Narasimhan.
1999. Markov chain Monte Carlo and models of consideration
set and parameter heterogeneity. J. Econometrics 89 223–248.

Consideration sets are enumerated and modeled with a
Dirichlet prior in a model of choice. A latent state variable
is introduced to indicate the consideration set, resulting in a
model of structural heterogeneity.

Chang, Kwangpil, S. Siddarth, Charles B. Weinberg. 1999. The
impact of heterogeneity in purchase timing and price respon-
siveness on estimates of sticker shock effects. Marketing Sci.
18 178–192.

A random utility model with reference prices is exam-
ined, with and without allowance for household heterogeneity.
When heterogeneity is present in the model, the reference price
coefficient is estimated to be close to zero.

DeSarbo, Wayne, Youngchan Kim, Duncan Fong. 1999. A Bayesian
multidimensional scaling procedure for the spatial analysis of
revealed choice data. J. Econometrics 89 79–108.

The deterministic portion of a latent variable model is spec-
ified as a scalar product of consumer and brand coordinates
to yield a spatial representation of revealed choice data. The
model provides a graphical representation of the market struc-
ture of product offerings.

Edwards, Yancy, Greg M. Allenby. 2003. Multivariate analysis of
multiple response data. J. Marketing Res. Forthcoming.

Pick any of J data is modeled with a multivariate pro-
bit model, allowing standard multivariate techniques to be
applied to the parameter of the latent normal distribution.
Identifying restrictions for the model are imposed by post-
processing the draws of the Markov chain.

Huber, Joel, Kenneth Train. 2001. On the similiarity of classical and
Bayesian estimates of individual mean partworths. Marketing
Lett. 12 259–269.

Classical and Bayesian estimation methods are found to
yield similar individual-level estimates. The classical methods
condition on estimated hyperparameters, while Bayesian meth-
ods account for their uncertainty.

Jen, Lichung, Chien-Heng Chou, Greg M. Allenby. 2003. A Bayesian
approach to modeling purchase frequency. Marketing Lett. 14
5–20.

A model of purchase frequency that combines a Poisson
likelihood with gamma mixing distribution is proposed, where
the mixing distribution is a function of covariates. The covari-
ates are shown to be useful for customers with short purchase
histories or have infrequent interaction with the firm.

Kalyanam, Kirthi, Thomas S. Shively. 1998. Estimating irregu-
lar pricing effects: A stochastic spline regression approach.
J. Marketing Res. 35 16–29.

Stochastic splines are used to model the relationship
between price and sales, resulting in a more flexible specifica-
tion of the likelihood function.

Kalyanam, Kirthi. 1996. Pricing decision under demand uncer-
tainty: A Bayesian mixture model approach. Marketing Sci.
15 207–221.

Model uncertainty is captured in model predictions by tak-
ing a weighted average where the weights correspond to the
posterior probability of the model. Pricing decisions are shown
to be more robust.

Kamakura, Wagner A., Michel Wedel. 1997. Statistical data fusion
for cross-tabulation. J. Marketing Res. 34 485–498.

Imputation methods are proposed for analyzing cross-
tabulated data with empty cells. Imputation is conducted in
an iterative manner to explore the distribution of missing
responses.

Kim, Jaehwan, Greg M. Allenby, Peter E. Rossi. 2002. Modeling
consumer demand for variety. Marketing Sci. 21 223–228.

A choice model with interior and corner solutions is derived
from a utility function with decreasing marginal utility. Kuhn-
Tucker conditions are used to relate the observed data, with
utility maximization in the likelihood specification.

Lee, Jonathan, Peter Boatwright, Wagner Kamakura. 2003. A
Bayesian model for prelaunch sales forecasting of recorded
music. Management Sci. 49 179–196.

The authors study the forecasting of sales for new music
albums prior to their introduction. A hierarchical logistic
shaped diffusion model is used to combine a variety of sources
of information on attributes of the album, effects of marketing
variables, and dynamics of adoption.

Leichty, John, Venkatram Ramaswamy, Steven H. Cohen. 2001.
Choice menus for mass customization. J. Marketing Res. 38
183–196.

A multivariate probit model is used to model conjoint data
where respondents can select multiple items from a menu. The
observed binomial data is modeled with a latent multivariate
normal distribution.

Lenk, Peter, Ambar Rao. 1990. New models from old: Forecasting
product adoption by hierarchical Bayes procedures. Marketing
Sci. 9 42–53.

The nonlinear likelihood function of the Bass model is com-
bined with a random-effects specification across new prod-
uct introductions. The resulting distribution of heterogeneity is
shown to improve early predictions of new product introduc-
tions.

Lenk, Peter J., Wayne S. DeSarbo, Paul E. Green, Martin R.
Young. 1996. Hierarchical Bayes conjoint analysis: Recovery of
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partworth heterogeneity from reduced experimental designs.
Marketing Sci. 15 173–191.

Fractionated conjoint designs are used to assess ability of
the distribution of heterogeneity to “bridge” conjoint analy-
ses across respondents to impute part-worths for attributes not
examined.

Manchanda, Puneet, Asim Ansari, Sunil Gupta. 1999. The “shop-
ping basket”: A model for multicategory purchase incidence
decisions. Marketing Sci. 18 95–114.

Multicategory demand data are modeled with a multi-
variate probit model. Identifying restrictions in the latent
error covariance matrix require use of a modified Metropolis-
Hastings algorithm.

Marshall, Pablo, Eric T. Bradlow. 2002. A unified approach to con-
joint analysis models. J. Amer. Statist. Assoc. 97 674–682.

Various censoring mechanisms are proposed for relating
observed interval, ordinal, and nominal data to a latent linear
conjoint model.

McCulloch, Robert E., Peter E. Rossi. 1994. An exact likelihood
analysis of the multinomial probit model. J. Econometrics 64
217–228.

The multinomial probit model is estimated using data aug-
mentation methods. Approaches to handling identifying model
identification are discussed.

Moe, Wendy, Peter Fader. 2002. Using advance purchase orders to
track new product sales. Marketing Sci. 21 347–364.

A hierarchical model of product diffusion is developed for
forecasting new product sales. The model features a mixture
of Weibulls as the basic model, with a distribution of hetero-
geneity over related products. The model is applied to data on
music album sales.

Montgomery, Alan L. 1997. Creating micro-marketing pricing
strategies using supermarket scanner data. Marketing Sci.
16 315–337.

Bayesian hierarchical models are applied to store-level scan-
ner data. The model specification involves store-level demo-
graphic variables. Profit opportunities for store-level pricing
are explored using constraints on the change in average price.

Montgomery, Alan L., Eric T. Bradlow. 1999. Why analyst overcon-
fidence about the functional form of demand models can lead
to overpricing. Marketing Sci. 18 569–583.

The specification of a function form involves imposing exact
restrictions in an analysis. Stochastic restrictions are introduced
via a more flexible model specification and prior distribution,
resulting in less aggressive policy implications.

Montgomery, Alan L., Peter E. Rossi. 1999. Estimating price elastic-
ities with theory-based priors. J. Marketing Res. 36 413–423.

The prior distribution is used to stochastically impose
restrictions on price elasticity parameters that are consistent
with economic theory. This proposed approach is compared to

standard shrinkage estimators that employ the distribution of
heterogeneity.

Neelamegham, Ramya, Pradeep Chintagunta. 1999. A Bayesian
model to forecast new product performance in domestic and
international markets. Marketing Sci. 18 115–136.

Alternative information sets are explored for making new
product forecasts in domestic and international markets, using
a Poisson model for attendance with log-normal heterogeneity.

Putler, Daniel S., Kirthi Kalyanam, James S. Hodges. 1996. A
Bayesian approach for estimating target market potential
with limited geodemographic information. J. Marketing Res.
33 134–149.

Prior information about correlation among variables is com-
bined with data on the marginal distribution to yield a joint
posterior distribution.

Rossi, Peter E., Zvi Gilula, Greg M. Allenby. 2001. Overcoming scale
usage heterogeneity: A Bayesian hierarchical approach. J. Amer.
Statist. Assoc. 96 20–31.

Consumer response data on a fixed-point rating scale are
assumed to be censored outcomes from a latent normal distri-
bution. Variation in the censoring cutoffs among respondents
allow for scale use heterogeneity.

Rossi, Peter E., Robert E. McCulloch, Greg M. Allenby. 1996. The
value of purchase history data in target marketing. Marketing
Sci. 15 321–340.

The information content of alternative data sources is eval-
uated using an economic loss function of coupon profitability.
The value of a household’s purchase history is shown to be
large relative to demographic information and other informa-
tion sets.

Rossi, Peter E., Greg M. Allenby. 1993. A Bayesian approach to
estimating household parameters. J. Marketing Res. 30 171–182.

Individual-level parameters are obtained with the use of an
informative, but relatively diffuse, prior distribution. Methods
of assessing and specifying the amount of prior information
are proposed.

Sandor, Zsolt, Michel Wedel. 2001. Designing conjoint choice exper-
iments using managers’ prior beliefs. J. Marketing Res. 28
430–444.

The information from an experiment involving discrete
choice models depends on the experimental design and the
values of the model parameters. Optimal designs are deter-
mined with an information measure that is dependent on the
prior distribution.

Seetharaman, P. B., Andrew Ainslie, Pradeep Chintagunta. 1999.
Investigating household state dependence effects across cate-
gories. J. Marketing Res. 36 488–500.

Multiple scanner panel datasets are used to estimate a
model of brand choice with state dependence. Individual-level
estimates of state dependence effects are examined among cat-
egories.
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Shively, Thomas A., Greg M. Allenby, Robert Kohn. 2000. A non-
parametric approach to identifying latent relationships in hier-
archical models. Marketing Sci. 19 149–162.

Stochastic splines are used to explore the covariate specifi-
cation in the distribution of heterogeneity. Evidence of highly
nonlinear relationships is provided.

Steenburgh, Thomas J., Andrew Ainslie, Peder H. Engebretson.
2002. Massively categorical variables: Revealing the informa-
tion in zipcodes. Marketing Sci. 22 40–57.

The effects associated with massively categorical variables,
such as zip codes, are modeled in a random-effects specifica-
tion. Alternative loss functions are examined for assessing the
value of the resulting shrinkage estimates.

Talukdar, Debabrata, K. Sudhir, Andrew Ainslie. 2002. Invest-
ing new production diffusion across products and countries.
Marketing Sci. 21 97–116.

The Bass diffusion model is coupled with a random effects
specification for the coefficients of innovation, imitation, and
market potential. The random effects model includes macroe-
conomic covariates that have large explanatory power relative
to unobserved heterogeneity.

Ter Hofstede, Frenkel, Michel Wedel, Jan-Benedict E. M.
Steenkamp. 2002. Identifying spatial segments in international
markets. Marketing Sci. 21 160–177.

The distribution of heterogeneity in a linear regression
model is specified as a conditional Guassian field to reflect
spatial associations. The heterogeneity specification avoids the
assumption that the random effects are globally independent.

Ter Hofstede, Frenkel, Youingchan Kim, Michel Wedel. 2002.
Bayesian prediction in hybrid conjoint analysis. J. Marketing
Res. 34 253–261.

Self-state attribute-level importance and profile evaluations
are modeled as joint outcomes from a common set of part-
worths. The likelihoods for the dataset differ and include other,
incidental parameters that facilitate the integration of informa-
tion to produce improved estimates.

Wedel, Michel, Rik Pieters. 2000. Eye fixations on advertisements
and memory for brands: A model and findings. Marketing Sci.
19 297–312.

A multilevel model of attention and memory response is
used to investigate the effect of brand, pictorial, and text
attributes of print advertisements. Information in the data is
integrated through a multilayered likelihood specification.

Yang, Sha, Greg M. Allenby. 2000. A model for observation, struc-
tural, and household heterogeneity in panel data. Marketing
Lett. 11 137–149.

Structural heterogeneity is specified as a finite mixture of
nonnested likelihoods, and covariates are associated with the
mixture point masses.

Yang, Sha, Greg M. Allenby, Geraldine Fennell. 2002a. Modeling
variation in brand preference: The roles of objective environ-
ment and motivating conditions. Marketing Sci. 21 14–31.

Intraindividual variation in brand preference is documented
and associated with variation in the consumption context and
motivations for using the offering. The unit of analysis is
shown be at the level of a person-occasion, not the person.

Yang, Sha, Greg M. Allenby. 2003. Modeling interdependent con-
sumer preferences. J. Marketing Res. Forthcoming.

The distribution of heterogeneity is modeled using a spatial
autoregressive process, yielding interdependent draws from
the mixing distribution. Heterogeneity is related to multiple
networks defined with geographic and demographic variables.
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