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Preface

Geostatistics refers to the sub-branch of spatial statistics in which the data
consist of a finite sample of measured values relating to an underlying spa-
tially continuous phenomenon. Examples include: heights above sea-level in a
topographical survey; pollution measurements from a finite network of monitor-
ing stations; determinations of soil properties from core samples; insect counts
from traps at selected locations. The subject has an interesting history. Orig-
inally, the term geostatistics was coined by Georges Matheron and colleagues
at Fontainebleau, France, to describe their work addressing problems of spatial
prediction arising in the mining industry. See, for example, Matheron (1963,
1971). The ideas of the Fontainebleau school were developed largely indepen-
dently of the mainstream of spatial statistics, with a distinctive terminology and
style which tended to conceal the strong connections with parallel developments
in spatial statistics. These parallel developments included work by Kolmogorov
(1941), Matérn (1960, reprinted as Matérn, 1986), Whittle (1954, 1962, 1963),
Bartlett (1964, 1967) and others. For example, the core geostatistical method
known as simple kriging is equivalent to minimum mean square error prediction
under a linear Gaussian model with known parameter values. Papers by Wat-
son (1971,1972) and the book by Ripley (1981) made this connection explicit.
Cressie (1993) considered geostatistics to be one of three main branches of spa-
tial statistics, the others being discrete spatial variation (covering distributions
on lattices and Markov random fields) and spatial point processes. Geostatisti-
cal methods are now used in many areas of application, far beyond the mining
context in which they were originally developed.

Despite this apparent integration with spatial statistics, much geostatistical
practice still reflects its independent origins, and from a mainstream statisti-
cal perspective this has some undesirable consequences. In particular, explicit
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stochastic models are not always declared and ad hoc methods of inference are
often used, rather than the likelihood-based methods of inference which are
central to modern statistics. The potential advantages of using likelihood-based
methods of inference are two-fold: they generally lead to more efficient estima-
tion of unknown model parameters; and they allow for the proper assessment
of the uncertainty in spatial predictions, including an allowance for the effects
of uncertainty in the estimation of model parameters.

Diggle, Tawn & Moyeed (1998) coined the phrase model-based geostatistics

to describe an approach to geostatistical problems based on the application of
formal statistical methods under an explicitly assumed stochastic model. This
book takes the same point of view.

We aim to produce an applied statistical counterpart to Stein (1999), who
gives a rigorous mathematical theory of kriging. Our intended readership in-
cludes postgraduate statistics students and scientific researchers whose work
involves the analysis of geostatistical data. The necessary statistical background
is summarised in an Appendix, and we give suggestions of further background
reading for readers meeting this material for the first time.

Throughout the book, we illustrate the statistical methods by applying
them in the analysis of real data-sets. Most of the data-sets which we use
are publically available and can be obtained from the book’s web-page,
http://www.maths.lancs.ac.uk/∼diggle/mbg.

Most of the book’s chapters end with a section on computation, in which we
show how the R software (R Development Core Team 2005) and contributed
packages geoR and geoRglm can be used to implement the geostatistical meth-
ods described in the corresponding chapters. This software is freely available
from the R Project web-page (http://www.r-project.org).

The first two chapters of the book provide an introduction and overview.
Chapters 3 and 4 then describe geostatistical models whilst chapters 5 to 8 cover
associated methods of inference. The material is mostly presented for univariate
problems, i.e. those for which the measured response at any location consists of a
single value, but Chapter 3 includes a discussion of some multivariate extensions
to geostatistical models and associated statistical methods.

The connections between classical and model-based gostatistics are closest
when, in our terms, the assumed model is the linear Gaussian model. Readers
who wish to confine their attention to this class of models on a first reading
may skip Sections 3.11, 3.12, Chapter 4, Sections 5.5, 7.5, 7.6 and Chapter 8.

Many friends and colleagues have helped us in various ways: by improving
our understanding of geostatistical theory and methods; by working with us on
a range of collaborative projects; by allowing us to use their data-sets; and by
offering constructive criticism of early drafts. We particularly wish to thank Ole
Christensen, with whom we have enjoyed many helpful discussions. Ole is also
the lead author of the geoRglm package.

Peter J Diggle, Paulo J Ribeiro Jr, March 2006.
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2

An overview of model-based geostatistics

The aim of this chapter is to provide a short overview of model-based geostatis-
tics, using the elevation data of Example 1.1 to motivate the various stages
in the analysis. Although this example is very limited from a scientific point of
view, its simplicity makes it well-suited to the task in hand. Note, however, that
Handcock & Stein (1993) show how to construct a useful explanatory variable
for these data using a map of streams which run through the study-region.

2.1 Design

Statistical design is concerned with deciding what data to collect in order to
address a question, or questions, of scientific interest. In this chapter, we shall
assume that the scientific objective is to produce a map of surface elevation
within a square study region whose side-length is 6.7 units, or 335 feet (≈ 102
meters); we presume that this study-region has been chosen for good reason,
either because it is of interest in its own right, or because it is representative of
some wider spatial region.

In this simple setting, there are essentially only two design questions: at how
many locations should we measure the elevation? and where should we place
these locations within the study-region?

In practice, the answer to the first question is usually dictated by limits
on the investigator’s time and/or any additional cost in converting each field
sample into a measured value. For example, some kinds of measurements involve
expensive off-site laboratory assays whereas others, such as surface elevation,
can be measured directly in the field. For whatever reason, the answer in this
example is 52.
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For the second question, two obvious candidate designs are a completely ran-

dom design or a completely regular design. In the former, the locations xi form
an independent random sample from the uniform distribution over the study
area, i.e. a homogeneous planar Poisson process (Diggle, 2003, chapter 1). In
the latter, the xi form a regular lattice pattern over the study-region. Classical
sampling theory (Cochran 1977) tends to emphasise the virtue of some form of
random sampling to ensure unbiased estimation of underlying population char-
acteristics, whereas spatial sampling theory (Matérn 1960) shows that under
typical modelling assumptions spatial properties are more efficiently estimated
by a regular design. A compromise, which the originators of the surface eleva-
tion data appear to have adopted, is to use a design which is more regular than
the completely random design but not as regular as a lattice.

Lattice designs are widely used in applications. The convenience of lat-
tice designs for field-work is obvious, and provided there is no danger that
the spacing of the lattice will match an underlying periodicity in the spatial
phenomenon being studied, lattice designs are generally efficient for spatial pre-
diction (Matérn 1960). In practice, the rigidity and simplicity of a lattice design
also provide some protection against sub-conscious bias in the placing of the xi.
Note in this context that, strictly, a regular lattice design should mean a lattice
whose origin is located at random, to guard against any subjective bias. The
soil data of Example 1.4 provide an example of a regular lattice design.

Even more common in some areas of application is the opportunistic design,
whereby geostatistical data are collected and analysed using an existing network
of locations xi which may have been established for quite different purposes.
Designs of this kind often arise in connection with environmental monitoring. In
this context, individual recording stations may be set up to monitor pollution
levels from particular industrial sources or in environmentally sensitive loca-
tions, without any thought initially that the resulting data might be combined
in a single, spatial analysis. This immediately raises the possibility that the de-
sign may be preferential, in the sense discussed in Section 1.2.3. Whether they
arise by intent or by accident, preferential designs run the risk that a standard
geostatistical analysis may produce misleading inferences about the underlying
continuous spatial variation.

2.2 Model formulation

We now consider model formulation – unusually before, rather than after, ex-
ploratory data analysis. In practice, clean separation of these two stages is rare.
However, in our experience it is useful to give some consideration to the kind
of model which, in principle, will address the questions of interest before refin-
ing the model through the usual iterative process of data analysis followed by
reformulation of the model as appropriate.

For the surface elevation data, the scientific question is a simple one – how can
we use the measured elevations to construct our best guess (or, in more formal
language, to predict) the underlying elevation surface throughout the study-
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region? Hence, our model needs to include a real-valued, spatially continuous
stochastic process, S(x) say, to represent the surface elevation as a function
of location, x. Depending on the nature of the terrain, we may want S(x) to
be continuous, differentiable or many-times differentiable. Depending on the
nature of the measuring device, or the skill of its operator, we may also want
to allow for some discrepancy between the true surface elevation S(xi) and
the measured value Yi at the design location xi. The simplest statistical model
which meets these requirements is a stationary Gaussian model, which we define
below. Later, we will discuss some of the many possible extensions of this model
which increase its flexibility.

We denote a set of geostatistical data in its simplest form, i.e. in the absence
of any explanatory variables, by (xi, yi) : i = 1, . . . , n where the xi are spatial
locations and yi is the measured value associated with the location xi. The
assumptions underlying the stationary Gaussian model are:

1. {S(x) : x ∈ IR2} is a Gaussian process with mean µ, variance σ2 =
Var{S(x)} and correlation function ρ(u) = Corr{S(x), S(x′)}, where u =
||x − x′|| and || · || denotes distance;

2. conditional on {S(x) : x ∈ IR2}, the yi are realisations of mutually in-
dependent random variables Yi, Normally distributed with conditional
means E[Yi|S(·)] = S(xi) and conditional variances τ2.

The model can be defined equivalently as

Yi = S(xi) + Zi : i = 1, . . . , n

where {S(x) : x ∈ IR2} is defined by assumption 1 above and the Zi are mu-
tually independent N(0, τ2) random variables. We favour the superficially more
complicated conditional formulation for the joint distribution of the Yi given
the signal, because it identifies the model explicitly as a special case of the
generalized linear geostatistical model which we introduced in Section 1.4.

In order to define a legitimate model, the correlation function ρ(u) must be
positive-definite. This condition imposes non-obvious constraints so as to ensure
that, for any integer m, set of locations xi and real constants ai, the linear
combination

∑m

i=1
aiS(xi) will have non-negative variance. In practice, this is

usually ensured by working within one of several standard classes of parametric
model for ρ(u). We return to this question in Chapter 3. For the moment, we
note only that a flexible, two-parameter class of correlation functions due to
Matérn (1960) takes the form

ρ(u; φ, κ) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ) (2.1)

where Kκ(·) denotes the modified Bessel function of the second kind, of order
κ. The parameter φ > 0 determines the rate at which the correlation decays to
zero with increasing u. The parameter κ > 0 is called the order of the Matérn
model, and determines the differentiability of the stochastic process S(x), in a
sense which we shall make precise in Chapter 3.

Our notation for ρ(u) presumes that u ≥ 0. However, the correlation function
of any stationary process must by symmetric in u, hence ρ(−u) = ρ(u).
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The stochastic variation in a physical quantity is not always well described by
a Normal distribution. One of the simplest ways to extend the Gaussian model
is to assume that the model holds after applying a transformation to the original
data. For positive-valued response variables, a useful class of transformations is
the Box-Cox family (Box & Cox 1964):

Y ∗ =

{

(Y λ − 1)/λ : λ 6= 0
log Y : λ = 0

(2.2)

Another simple extension to the basic model is to allow a spatially varying
mean, for example by replacing the constant µ by a linear regression model for
the conditional expectation of Yi given S(xi), so defining a spatially varying
mean µ(x).

A third possibility is to allow S(x) to have non-stationary covariance struc-
ture. Arguably, most spatial phenomena exhibit some form of non-stationarity,
and the stationary Gaussian model should be seen only as a convenient ap-
proximation to be judged on its usefulness rather than on its strict scientific
provenance.

2.3 Exploratory data analysis

Exploratory data analysis is an integral part of modern statistical practice, and
geostatistics is no exception. In the geostatistical setting, exploratory analysis
is naturally oriented towards the preliminary investigation of spatial aspects of
the data which are relevant to checking whether the assumptions made by any
provisional model are approximately satisfied. However, non-spatial aspects can
and should also be investigated.

2.3.1 Non-spatial exploratory analysis

For the elevation data in Example 1.1 the 52 data values range from 690 to 960,
with mean 827.1, median 830 and standard deviation 62. A histogram of the
52 elevation values (Figure 2.1) indicates only mild asymmetry, and does not
suggest any obvious outliers. This adds some support to the use of a Gaussian
model as an approximation for these data. Also, because geostatistical data are,
at best, a correlated sample from a common underlying distribution, the shape
of their histogram will be less stable than that of an independent random sample
of the same size, and this limits the value of the histogram as a diagnostic for
non-Normality.

In general, an important part of exploratory analysis is to examine the re-
lationship between the response and available covariates, as illustrated for the
soil data in Figure 1.7. For the current example, the only available covariates
to consider are the spatial coordinates themselves.
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Figure 2.1. Histogram of the surface elevation data.

2.3.2 Spatial exploratory analysis

The first stage in spatial exploratory data analysis is simply to plot the response
data in relation to their locations, for example using a circle plot as shown for
the surface elevation data in Figure 1.1. Careful inspection of this plot can
reveal spatial outliers, i.e. responses which appear grossly discordant with their
spatial neighbours, or spatial trends which might suggest the need to include
a trend surface model for a spatially varying mean, or perhaps qualitatively
different behaviour in different sub-regions.

In our case, the most obvious feature of Figure 1.1 is the preponderance of
large response values towards the southern end of the study region. This sug-
gests that a trend surface term in the model might be appropriate. In some
applications, the particular context of the data might suggest that there is
something special about the north-south direction – for example, for applica-
tions on a large geographical scale, we might expect certain variables relating
to the physical environment to show a dependence on latitude. Otherwise, our
view would be that if a trend surface is to be included in the model at all, then
both of the spatial coordinates should contribute to it because the orientation
of the study region is essentially arbitrary.

Scatterplots of the response variable against each of the spatial coordinates
can sometimes reveal spatial trends more clearly. Figure 2.2 show the surface ele-
vations plotted against each of the coordinates, with lowess smooths (Cleveland,
1979, 1981) added to help visualisation. These plots confirm the north-south
trend whilst additionally suggesting a less pronounced, non-monotone east-west
trend, with higher responses concentrated towards the eastern and western
edges of the study-region.
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Figure 2.2. Elevation data against the coordinates.

When interpreting plots of this kind it can be difficult, especially when
analysing small data-sets, to distinguish between a spatially varying mean
response and correlated spatial variation about a constant mean. Strictly speak-
ing, without independent replication the distinction between a deterministic
function µ(x) and the realisation of a stochastic process S(x) is arbitrary. Op-
erationally, we make the distinction by confining ourselves to “simple” functions
µ(x), for example low-order polynomial trend surfaces, using the correlation
structure of S(x) to account for more subtle patterns of spatial variation in the
response. In Chapter 5 we shall use formal, likelihood-based methods to guide
our choice of model for both mean and covariance structure. Less formally, we
interpret spatial effects which vary on a scale comparable to or greater than
the dimensions of the study-region as variation in µ(x) and smaller-scale ef-
fects as variation in S(x). This is in part a pragmatic strategy, since covariance
functions which do not decay essentially to zero at distances shorter than the
dimensions of the study region will be poorly identified, and in practice indis-
tinguishable from spatial trends. Ideally, the model for the trend should also
have a natural physical interpretation; for example, in an investigation of the
dispersal of pollutants around a known source, it would be natural to model
µ(x) as a function of the distance, and possibly the orientation, of x relative to
the source.

To emphasise this point, the three panels of Figure 2.3 compare the original
Figure 1.1 with circle plots of residuals after fitting linear and quadratic trend
surface models by ordinary least squares. If we assume a constant spatial mean
for the surface elevations themselves, then the left-hand panel of Figure 2.3
indicates that the elevations must be very strongly spatially correlated, to the
extent that the correlation persists at distances beyond the scale of the study
region. As noted above, fitting a model of this kind to the data would result
in poor identification of parameters describing the correlation structure. If, in
contrast, we use a linear trend surface to describe a spatially varying mean,
then the central panel of Figure 2.3 still suggests spatial correlation because
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Figure 2.3. Circle plot of the surface elevation data. The left-hand panel shows the
original data. The center and right-hand panels show the residuals from first-order
(linear) and second-order (quadratic) polynomial trend surfaces, respectively, using
empty and filled circles to represent negative and positive residuals and circle radii
proportional to the absolute values of the residuals.

positive and negative residuals tend to occur together, but the scale of the
spatial correlation is smaller. The right-hand panel of 2.3 has a qualitatively
similar appearance to the centre panel, but the range of the residuals has been
reduced, because some additional variation is taken up by the quadratic terms
in the fitted trend surface. The range of the residuals is from −61.1 to +110.7
in the centre panel, and from −63.3 to +97.8 in the right-hand panel.

Notwithstanding the above discussion, visual assessment of spatial correlation
from a circle plot is difficult. For a sharper assessment, a useful exploratory tool
is the empirical variogram. We discuss theoretical and empirical variograms
in more detail in Chapters 3 and 5, respectively. Here, we give only a brief
description.

For a set of geostatistical data (xi, yi) : i = 1, . . . , n, the empirical variogram

ordinates are the quantities vij = 1

2
(yi−yj)

2. For obvious reasons, some authors
refer to these as the semi-variogram ordinates. If the yi have spatially constant
mean and variance, then vij has expectation σ2{1 − ρ(xi, xj)} where σ2 is
the variance and ρ(xi, xj) denotes the correlation between yi and yj. If the yi

are generated by a stationary spatial process, then ρ(·) depends only on the
distance between xi and xj and typically approaches zero at large distances,
hence the expectation of the vij approaches a constant value, σ2, as the distance
uij between xi and xj increases. If the yi are uncorrelated, then all of the vij

have expectation σ2. These properties motivate the definition of the empirical

variogram as a plot of vij against the corresponding distance uij . A more easily
interpretable plot is obtained by averaging the vij within distance bands.

The left-hand panel of Figure 2.4 shows a variogram for the original sur-
face elevations, whilst the right-hand panel shows variograms for residuals from
the linear and quadratic trend-surface models, indicated by solid and dashed
lines, respectively. In the left-hand panel, the variogram increases throughout
the plotted range, indicating that if these data were generated by a stationary
stochastic process, then the range of its spatial correlation must extend beyond
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Figure 2.4. Empirical variograms for the original data (left-panel) and for residuals
(right panel) from a linear (solid lines) or quadratic (dashed lines) trend surface. In all
three cases, empirical variogram ordinates have been averaged in bins of unit width.

the scale of the study-region. Pragmatically, including a spatially varying mean
is a better modelling strategy. The solid line on right hand panel shows be-
haviour more typical of a stationary, spatially correlated process, i.e. an initial
increase levelling off as the correlation decays to zero at larger distances. Finally,
the shape of the variogram in the dashed line on the right-hand panel is similar
to the solid one but its range is smaller by a factor of about 0.6. The range of
values in the ordinates of the empirical variogram is approximately equal to the
variance of the residuals, hence the reduction in range again indicates how the
introduction of progressively more elaborate models for the mean accounts for
correspondingly more of the empirical variation in the original data. Note also
that in all panels of Figure 2.4 the empirical variogram approaches zero at small
distances. This indicates that surface elevation is being measured with negligi-
ble error, relative to either the spatial variation in the surface elevation itself
(left-hand panel), or the residual spatial variation about the linear or quadratic
trend surface (right-hand panel). This interpretation follows because the expec-
tation of vij corresponding to two independent measurements, yi and yj, at the
same location is simply the variance of the measurement error.

We emphasise that, for reasons explained in Chapter 5, we prefer to use the
empirical variogram only as an exploratory tool, rather than as the basis for
formal inference. With this proviso, Figure 2.4 gives a strong indication that a
stationary model is unsuitable for these data, whereas the choice between the
linear and quadratic trend-surface models is less clear-cut.

When an empirical variogram appears to show little or no spatial correla-
tion, it can be useful to assess more formally whether the data are compatible
with an underlying model of the form yi = µ(xi) + zi where the zi are un-
correlated residuals about a spatially varying mean µ(x). A simple way to do
this is to compute residuals about a fitted mean µ̂(x) and to compare the
residual empirical variogram with the envelope of empirical variograms com-
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Figure 2.5. Monte Carlo envelopes for the variogram of ordinary least squares resid-
uals of the surface elevation data after fitting linear (left-hand panel) or quadratic
(right-hand panel) trend surface models.

puted from random permutations of the residuals, holding the corresponding
locations fixed. The left-hand panel of Figure 2.5 shows a variogram envelope
obtained from 99 independent random permutations of the residuals from a
linear trend surface fitted to the surface elevations by ordinary least squares.
This shows that the increasing trend in the empirical variogram is statistically
significant, confirming the presence of positive spatial correlation. The same
technique applied to the residuals from the quadratic trend surface produces
the diagram shown as the right-hand panel of Figure 2.5. This again indicates
significant spatial correlation, although the result is less clear-cut than before,
as the empirical variogram ordinates at distances 0.5 and 1.0 fall much closer
to the lower simulation envelope than they do in the left-hand panel.

2.4 The distinction between parameter estimation and
spatial prediction

Before continuing with our illustrative analysis of the surface elevation data, we
digress to expand on the distinction between estimation and prediction.

Suppose that S(x) represents the level of air pollution at the location x,
that we have observed (without error, in this hypothetical example) the values
Si = S(xi) at a set of locations xi : i = 1, . . . , n forming a regular lattice over a
spatial region of interest, A, and that we wish to learn about the average level
of pollution over the region A. An intuitively reasonable estimate is the sample
mean,

S̄ = n−1

n
∑

i=1

Si. (2.3)
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What precision should we attach to this estimate?
Suppose that S(x) has aconstant expectation, θ = E[S(x)] for any location x

in A. One possible interpretation of S̄ is as an estimate of θ, in which case an
appropriate measure of precision is the mean square error, E[(S̄ − θ)2]. This is
just the variance of S̄, which we can calculate as

n−2

n
∑

i=1

n
∑

j=1

Cov(Si, Sj). (2.4)

For a typical geostatistical model, the correlation between any two Si and Sj

will be either zero or positive, and (2.4) will therefore be larger than the naive
expression for the variance of a sample mean, σ2/n where σ2 = Var{S(x)}.

If we regard S̄ as a predictor of the spatial average,

SA = |A|−1

∫

A

S(x)dx,

where |A| is the area of A, then the mean square prediction error is E[(S̄−SA)2].
Noting that SA is a random variable, we write this as

E[(S̄ − SA)2] = n−2

n
∑

i=1

n
∑

j=1

Cov(Si, Sj)

+ |A|−2

∫

A

∫

A

Cov{S(x), S(x′)}dxdx′

− 2(n|A|)−1

n
∑

i=1

∫

A

Cov{S(x), S(xi)}dx. (2.5)

In particular, the combined effect of the second and third terms on the right
hand side of (2.5) can easily be to make the mean square prediction error smaller
than the naive variance formula. For example, if we increase the sample size n
by progressively decreasing the spacing of the lattice points xi, (2.5) approaches
zero, whereas (2.4) does not.

2.5 Parameter estimation

For the stationary Gaussian model, the parameters to be estimated are the
mean µ and any additional parameters which define the covariance structure
of the data. Typically, these include the signal variance σ2, the conditional or
measurement error variance τ2 and one or more correlation function parameters
φ.

In geostatistical practice, these parameters can be estimated in a number of
different ways which we shall discuss in detail in Chapter 5. Our preference
here is to use the method of maximum likelihood within the declared Gaussian
model.

For the elevation data, if we assume a stationary Gaussian model with a
Matérn correlation function and a fixed value κ = 1.5, the maximum likelihood
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estimates of the remaining parameters are µ̂ = 848.3, σ̂2 = 3510.1, τ̂2 = 48.2
and φ̂ = 1.2.

However, our exploratory analysis suggested a model with a non-constant
mean. Here, we assume a linear trend surface,

µ(x) = β0 + β1d1 + β2d2

where d1 and d2 are the north-south and east-west coordinates. In this case
the parameter estimates are β̂0 = 912.5, β̂1 = −5, β̂2 = −16.5, σ̂2 = 1693.1,
τ̂2 = 34.9 and φ̂ = 0.8. Note that because the trend surface accounts for some
of the spatial variation, the estimate of σ2 is considerably smaller than for the
stationary model, and similarly for the parameter φ which corresponds to the
range of the spatial correlation. As anticipated, for either model the estimate
of τ2 is much smaller than the estimate of σ2. The ratio of τ̂2 to σ̂2 is 0.014 for
the stationary model, and 0.021 for the linear trend surface model.

2.6 Spatial prediction

For prediction of the underlying, spatially continuous elevation surface we shall
here illustrate perhaps the simplest of all geostatistical methods: simple kriging.
In our terms, simple kriging is minimum mean square error prediction under the
stationary Gaussian model, but ignoring parameter uncertainty, i.e. estimates
of all model parameters are plugged into the prediction equations as if they
were the true parameter values. As discussed earlier, we do not claim that this
is a good model for the surface elevation data.

The minimum mean square error predictor, Ŝ(x) say, of S(x) at an arbitrary
location x is the function of the data, y = (y1, . . . , yn), which minimises the
quantity E[{Ŝ(x) − S(x)}2]. A standard result, which we discuss in Chapter 6,
is that Ŝ(x) = E[S(x)|y]. For the stationary Gaussian process, this conditional
expectation is a linear function of the yi, namely

Ŝ(x) = µ +
n

∑

i=1

wi(x)(yi − µ) (2.6)

where the wi(x) are explicit functions of the covariance parameters σ2, τ2 and
φ.

The top-left panel of Figure 2.6 gives the result of applying (2.6) to the
surface elevation data, using as values for the model parameters the maximum
likelihood estimates reported in Section 2.5, whilst the bottom-left panel shows
the corresponding prediction standard errors, SE(x) =

√
Var{S(x)|y}. The

predictions follow the general trend of the observed elevations whilst smoothing
out local irregularities. The prediction variances are generally small at locations
close to the sampling locations, because τ̂ 2 is relatively small; had we used the
value τ2 = 0 the prediction standard error would have been exactly zero at each
sampling location and the predicted surface Ŝ(x) would have interpolated the
observed responses yi.
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Figure 2.6. Simple kriging predictions for the surface elevation data. The top-left
panel shows the simple kriging predictor as a grey-scale image and contour plot; sam-
pling locations are plotted as circles with radii proportional to observed elevations.
The bottom-left panel shows the prediction standard deviations; sampling locations
are plotted as small crosses. The top-right and bottom-right panels give the same
information, but based on the model with a linear trend-surface.

It is straightforward to adapt the simple kriging formula (2.6) to incorporate
a spatially varying mean. We simply replace the constant µ on the right-hand-
side of (2.6) by a spatial trend, µ(x). If we do this, using the linear trend surface
model and its associated maximum likelihood parameter estimates we obtain
the results summarised in the top-right and bottom-right panels of Figure 2.6.
The plots corresponding to the two different models are directly comparable be-
cause they use a common grey-scale within each pair. Note in particular that in
this simple example, the dubious assumption of stationarity has not prevented
the simple kriging methodology from producing a predicted surface which cap-
tures qualitatively the apparent spatial trend in the data, and which is almost
identical to the predictions obtained using the more reasonable linear trend
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surface model. The two models produce somewhat different prediction stan-
dard errors; these range between 0 and 25.5 for the stationary model, between
0 and 24.4 for the model with the linear trend surface and between 0 and 22.9
for the model with the quadratic trend surface. The differences amongst the
three models are rather small. They are influenced by several different aspects
of the data and model, including the data-configuration and the estimated val-
ues of the model parameters. In other applications, the choice of model may
have a stronger impact on the predictive inferences we make from the data,
even when this choice does not materially affect the point predictions of the
underlying surface S(x). Note also that the plug-in standard errors quoted here
do not account for parameter uncertainty.

2.7 Definitions of distance

A fundamental stage in any geostatistical analysis is to define the metric for cal-
culating the distance between any two locations. By default, we use the standard
planar Euclidean distance, i.e. the“straight-line distance”between two locations
in IR2. Non-Euclidean metrics may be more appropriate for some applications.
For example, Rathbun (1998) discusses the measurement of distance between
points in an estuarine environment where, arguably, two locations which are
close in the Euclidean metric but separated by dry land should not be consid-
ered as near neighbours. It is not difficult to think of other settings where natural
barriers to communication might lead the investigator to question whether it is
reasonable to model spatial correlation in terms of straight-line distance.

Even when straight-line distance is an appropriate metric, if the study-region
is geographically extensive, distances computed between points on the earth’s
surface should strictly be great-circle distances, rather than straight-line dis-
tances on a map projection. Using (θ, φ) to denote a location in degrees of
longitude and latitude, and treating the earth as a sphere of radius r = 6378
kilometres, the great-circle distance between two locations is

r cos−1{sinφ1 sin φ2 + cosφ1 cosφ2 cos(θ1 − θ2)}.

Section 3.2 of Waller & Gotway (2004) gives a nice discussion of this issue
from a statistical perspective. Banerjee (2005) examines the effect of distance
computations on geostatistical analysis and concludes that the choice of metric
may influence the resulting inferences, both for parameter estimation and for
prediction. Note in particular that degrees of latitude and longitude represent
approximately equal distances only close to the equator.

Distances calculations are especially relevant to modelling spatial correlation,
hence parameters which define the correlation structure are particularly sensi-
tive to the choice of metric. Furthermore, the Euclidean metric plays an integral
part in determining valid classes of correlation functions using Bochner’s the-
orem (Stein 1999). Our geoR software implementation only calculates planar
Euclidean distances.
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2.8 Computation

The non-spatial exploratory analysis of the surface elevation data reported in
this chapter uses only built-in R functions as follows.

> with(elevation, hist(data, main = "", xlab = "elevation"))

> with(elevation, plot(coords[, 1], data, xlab = "W-E",

+ ylab = "elevation data", pch = 20, cex = 0.7))

> lines(lowess(elevation$data ~ elevation$coords[, 1]))

> with(elevation, plot(coords[, 2], data, xlab = "S-N",

+ ylab = "elevation data", pch = 20, cex = 0.7))

> lines(with(elevation, lowess(data ~ coords[, 2])))

To produce circle plots of the residual data we use the geoR function
points.geodata(), which is invoked automatically when a geodata object is
passed as an argument to the built-in function points(), as indicated below.
The argument trend defines a linear model on the covariates from which the
residuals are extracted for plotting. The values "1st" and "2nd" passed to the
argument trend are aliases to indicate first and second degree polynomials on
the coordinates. More details and other options to specify the trend are dis-
cussed later in this Section and in the documentation for trend.spatial().
Setting abs=T instructs the function to draw the circles with radii proportional
to the absolute values of the residuals.

> points(elevation, cex.max = 2.5)

> points(elevation, trend = "1st", pt.div = 2, abs = T,

+ cex.max = 2.5)

> points(elevation, trend = "2nd", pt.div = 2, abs = T,

+ cex.max = 2.5)

To calculate and plot the empirical variograms shown in Figure 2.4 for the
original data and for the residuals, we use variog(). The argument uvec defines
the classes of distance used when computing the empirical variogram, whilst
plot() recognises that its argument is a variogram object, and automatically
invokes plot.variogram(). The argument trend is used to indicate that the
variogram should be calculated from the residuals about a fitted trend surface.

> plot(variog(elevation, uvec = seq(0, 5, by = 0.5)),

+ type = "b")

> res1.v <- variog(elevation, trend = "1st", uvec = seq(0,

+ 5, by = 0.5))

> plot(res1.v, type = "b")

> res2.v <- variog(elevation, trend = "2nd", uvec = seq(0,

+ 5, by = 0.5))

> lines(res2.v, type = "b", lty = 2)

To obtain the residual variogram and simulation envelopes under random per-
mutation of the residuals, as shown in Figure 2.5, we proceed as in the following
example. By default, the function uses 99 simulations, but this can be changed
using the optional argument nsim.
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> set.seed(231)

> mc1 <- variog.mc.env(elevation, obj = res1.v)

> plot(res1.v, env = mc1, xlab = "u")

> mc2 <- variog.mc.env(elevation, obj = res2.v)

> plot(res2.v, env = mc2, xlab = "u")

To obtain maximum likelihood estimates of the Gaussian model, with or without
a trend term, we use the geoR function likfit(). Because this function uses
a numerical maximisation procedure, the user needs to provide initial values
for the covariance parameters, using the argument ini. In this example we use
the default value 0 for the parameter τ2, in which case ini specifies initial
values for the parameters σ2 and φ. Initial values are not required for the mean
parameters.

> ml0 <- likfit(elevation, ini = c(3000, 2), cov.model = "matern",

+ kappa = 1.5)

> ml0

likfit: estimated model parameters:

beta tausq sigmasq phi

" 848.317" " 48.157" "3510.096" " 1.198"

likfit: maximised log-likelihood = -242.1

> ml1 <- likfit(elevation, trend = "1st", ini = c(1300,

+ 2), cov.model = "matern", kappa = 1.5)

> ml1

likfit: estimated model parameters:

beta0 beta1 beta2 tausq sigmasq

" 912.4865" " -4.9904" " -16.4640" " 34.8953" "1693.1329"

phi

" 0.8061"

likfit: maximised log-likelihood = -240.1

To carry out the spatial interpolation using simple kriging we first define, and
store in the object locs, a grid of locations at which predictions of the values
of the underlying surface are required. The function krige.control() then
defines the model to be used for the interpolation, which is carried out by
krige.conv(). In the example below, we first obtain predictions for the sta-
tionary model, and then for the model with a linear trend on the coordinates.
If required, the user can restrict the trend surface model, for example by spec-
ifying a linear trend is the north-south direction. However, as a general rule
we prefer our inferences to be invariant to the particular choice of coordinate
axes, and would therefore fit both linear trend parameters or, more generally,
full polynomial trend surfaces.

> locs <- pred_grid(c(0, 6.3), c(0, 6.3), by = 0.1)

> KC <- krige.control(type = "sk", obj.mod = ml0)
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> sk <- krige.conv(elevation, krige = KC, loc = locs)

> KCt <- krige.control(type = "sk", obj.mod = ml1, trend.d = "1st",

+ trend.l = "1st")

> skt <- krige.conv(elevation, krige = KCt, loc = locs)

Finally, we use a selection of built-in graphical functions to produce the maps
shown in Figure 2.6, using optional arguments to the graphical functions to
ensure that pairs of corresponding plots use the same grey-scale.

> pred.lim <- range(c(sk$pred, skt$pred))

> sd.lim <- range(sqrt(c(sk$kr, skt$kr)))

> image(sk, col = gray(seq(1, 0, l = 51)), zlim = pred.lim)

> contour(sk, add = T, nlev = 6)

> points(elevation, add = TRUE, cex.max = 2)

> image(skt, col = gray(seq(1, 0, l = 51)), zlim = pred.lim)

> contour(skt, add = T, nlev = 6)

> points(elevation, add = TRUE, cex.max = 2)

> image(sk, value = sqrt(sk$krige.var), col = gray(seq(1,

+ 0, l = 51)), zlim = sd.lim)

> contour(sk, value = sqrt(sk$krige.var), levels = seq(10,

+ 27, by = 2), add = T)

> points(elevation$coords, pch = "+")

> image(skt, value = sqrt(skt$krige.var), col = gray(seq(1,

+ 0, l = 51)), zlim = sd.lim)

> contour(skt, value = sqrt(skt$krige.var), levels = seq(10,

+ 27, by = 2), add = T)

> points(elevation$coords, pch = "+")

In geoR, covariates which define a linear model for the mean response can be
specified by passing additional arguments to plotting or model-fitting functions.
In the examples above, we used trend="1st" or trend="2nd" to specify a lin-
ear or quadratic trend surface. However, these are simply short-hand aliases
to formulae which define the corresponding linear models, and are provided
for users’ convenience. For example, the model formula trend=~coords[,1] +

coords[,2] would produce the same result as trend="1st". The trend argu-
ment will also accept a matrix representing the design matrix of a general linear
model, or the output of the trend definition function, trend.spatial(). For
example, the call below to plot() can be used in order to inspect the data
after taking out the linear effect of the north-south coordinate. By setting the
argument trend=~coords[,2] the function fits a standard linear model on this
covariate and uses the residuals to produce the plots shown in Figure 2.7, rather
than plotting the original response data. Similarly, we could fit a quadratic func-
tion on the x-coordinate by setting trend=~coords[,2] + poly(coords[,1],

degree=2). We invite the reader to experiment with different options for the
argument trend and trend.spatial(). The procedure of taking out the effect
of a covariate is sometimes called trend removal.

> plot(elevation, low = TRUE, trend = ~coords[, 2], qt.col = 1)
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Figure 2.7. Output of plot.geodata() when setting the argument
trend=~coords[,2].

The trend argument can also be used to take account of covariates other than
functions of the coordinates. For example, the data set ca20 included in geoR

stores the calcium content from soil samples, as discussed in Example 1.4, to-
gether with associated covariate information. Recall that in this example the
study region is divided in three sub-regions with different histories of soil man-
agement. The covariate area included in the data-set indicates for each datum
the sub-region in which it was collected. Figure 2.8 shows the exploratory plot
for the residuals after removing a separate mean for calcium content in each
sub-region. This diagram was produced using the following code.

> data(ca20)

> plot(ca20, trend = ~area, qt.col = 1)

The plotting functions in geoR also accept an optional argument lambda

which specifies the numerical value for the parameter of the Box-Cox family
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Figure 2.8. Exploratory plot for the ca20 data-set obtained when setting trend=~area.

of transformations, with default lambda=1 corresponding to no transformation.
For example, the command

> plot(ca20, lambda = 0)

sets the Box-Cox transformation parameter to λ = 0, which will then produce
plots using the logarithm of the original response variable.

2.9 Exercises

2.1. Investigate the R packages splancs or spatstat, both of which provide
functions for the analysis of spatial point pattern data. Use either of these
packages to confirm (or not, as the case may be) that the design used
for the surface elevation data is more regular than a completely random
design.
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2.2. Consider the following two models for a set of responses, Yi : i = 1, . . . , n
associated with a sequence of positions xi : i = 1, . . . , n along a one-
dimensional spatial axis x.

(a) Yi = α + βxi + Zi, where α and β are parameters and the Zi are
mutually independent with mean zero and variance σ2

Z .
(b) Yi = A + Bxi + Zi where the Zi are as in (a) but A and B are now

random variables, independent of each other and of the Zi, each with
mean zero and respective variances σ2

A and σ2

B .

For each of these models, find the mean and variance of Yi and the covari-
ance between Yi and Yj for any j 6= i. Given a single realisation of either
model, would it be possible to distinguish between them?

2.3. Suppose that Y = (Y1, . . . , Yn) follows a multivariate Normal distribution
with E[Yi] = µ and Var{Yi} = σ2 and that the covariance matrix of Y
can be expressed as V = σ2R(φ). Write down the log-likelihood function
for θ = (µ, σ2, φ) based on a single realisation of Y and obtain explicit
expressions for the maximum likelihood estimators of µ and σ2 when φ
is known. Discuss how you would use these expressions to find maximum
likelihood estimators numerically when φ is unknown.

2.4. Load the ca20 data-set with data(ca20). Check the data-set documen-
tation with help(ca20). Perform an exploratory analysis of these data.
Would you include a trend term in the model? Would you recommend a
data transformation? Is there evidence of spatial correlation?

2.5. Load the Paraná data with data(parana) and repeat Exercise 2.4.


