CE-003: Estatística II - Turma K/O Avaliações Semanais (2º semestre 2016)

Semana 2 (av-01)

- 1. Dezesseis equipes irão disputar um torneio de jogos eliminatórios. As equipes são sorteadas para ocupar os posições iniciais da chave de jogos pré-definida. As equipes perdedoras da penúltima etapa fazem um jogo para disputar a terceira colocação e as vencedoras disputam para definir a primeira e segunda colocações. Ao final são atribuídas medalhas (ouro, prata e bronze) às três primeiras colocadas.
 - (a) As regras do torneio são "justas" em relação a possibilidade de vitórias das equipes?
 - (b) Quantas possíveis configurações de equipes medalhistas podem ocorrer (sem considerar a classificação entre as três primeiras)?
 - (c) E considerando a classificação?

Considerando que as equipes possuem chance igual de vitória em cada jogo.

- (d) Qual a probabilidade de uma determinada equipe vencer o torneio?
- (e) Qual a probabilidade de uma determinada equipe conseguir uma medalha?
- (f) Se um país concorre com duas equipes, qual a probabilidade de que o país tenha alguma medalhista?

Agora considerando que as equipes possuem níveis técnicos diferentes.

- (g) As probabilidades calculadas nos três itens anteriores seriam diferentes?
- (h) Sugira algum procedimento para calcular tais probabilidades.

Solução:

- (a) Sim. A partir do sorteio todos tem a mesma probabilidade (1/16) de vencer.
- (b) Quantas possíveis configurações de equipes medalhistas podem ocorrer (sem considerar a classificação entre as três primeiras)?
- (c) E considerando a classificação?

Considerando que as equipes possuem chance igual de vitória em cada jogo.

(d) Cada time tem que jogar e vencer quatro partidas para vencer. Sob a probabilidade de 1/2 de vencer cada partica a probabilidade de vencer o torneio fica:

$$P[V_1 \cap V_2 \cap V_3 \cap V_4] = P[V_1] \cdot P[V_2] \cdot P[V_3] \cdot P[V_4] = (1/2)^4 = 1/16 = 0,0625$$

Outro argumento é o nde que, se o torneio é "justo" todos têm a mesma probabilidade de vitória e portanto como são 16 equipes a probabilidade de cada uma vencer é de 1/16.

- (e) $P[\text{medalha}] = P[\text{ouro} \cup \text{prata} \cup \text{bronze}] \stackrel{Mut.Exc.}{=} P[\text{ouro}] + P[\text{prata}] + P[\text{bronze}] = 1/16 + 1/16 + 1/16 = 3/16 = 0, 1875$
- (f) Sendo as equipes A e B e denotando por P[A] e P[B] suas respectivas probabilidades de medalha seria necessário calcular:

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

Note-se que os eventos não são mutuamente exclusivos nem independentes. Seriam mutuamente exclusivos se fosse uma particular medalha (ouro, prata ou bronze).

- (g) Sim, pois em cada partida a probabilidade de vitória de cada equipe não seria mais 1/2
- (h) Seria necessário conhecer as probabilidade de vitória de cada equipe em cada um dos possíveis confrontos. Tais probabilidades poderiam ser modeladas como função da posição das equipes em algum "ranking".

Semana 3 (av-02)

- 1. Em um teste de segurança, dois indivíduos tentam invadir um sistema. A probabilidade do primeiro conseguir é de 0,20 e do segundo 0,12. Faça suposição(ções) necessária(s) e responda:
 - (a) Qual a probabilidade de ambos invadirem o sistema?
 - (b) Qual a probabilidade do sistema não ser invadido?
 - (c) Qual(ais) suposição(ções) foi(ram) feita(s)?

Solução:

Notação:

A: primeiro indivíduo invade o sistema

B: segundo indivíduo invade o sistema

- (a) $P[A \cap B] \stackrel{ind}{=} P[A] \cdot P[B] = 0, 20 \cdot 0, 12 = 0,024$
- (b) $P[\overline{A} \cap \overline{B}] \stackrel{ind}{=} P[\overline{A}] \cdot P[\overline{B}] = 0,80 \cdot 0,88 = 0,704$ Solução alternativa:

 $1 - P[A \cup B] = 1 - [P[A] + P[B] - P[A \cap B]] \stackrel{ind}{=} 1 - (P[A] + P[B] - P[A] \cdot P[B]) = 1 - (0, 20 + 0, 12 - 0, 20 \cdot 0, 12) = 1 - (0, 20 + 0, 12 - 0, 20 - 0, 20 \cdot 0, 12) = 1 - (0, 20 + 0, 20 -$ 0.704

- (c) Suposição de independência entre os eventos A consegue invadir e B consegue invadir.
- 2. Uma determinada doença atinge um a cada 40.000 indivíduos de uma população. Um teste para detectar a doença fornece resultados corretos em 98% dos exames.
 - (a) Se um indivíduo é selecionado ao acaso da população para fazer o teste e o resultado é positivo, qual a probabilidade de que de fato tenha a doença?
 - (b) A probabilidade seria a mesma caso um indivíduo fizesse o teste por indicação de um médico, após um exame clínico no qual o médico suspeitou da doença. Justifique sua resposta.

Solução:

Notação e dados:

D: indivíduo possui doença \overline{D} : indivíduo não possui doença

P: teste positivo N: teste negativo

$$P[D] = 1/40000 \quad P[\overline{D}] = 39999/40000$$

$$P[P|D] = 0.98 \quad P[N|D] = 0.02$$

$$P[N|\overline{D}] = 0.98 \quad P[P|\overline{D}] = 0.02$$

(a)
$$P[D|P] = \frac{P[P|D]P[D]}{P[P|D]P[D] + P[P|\overline{D}]P[\overline{D}]} = \frac{0.98 \cdot (1/40000)}{0.98 \cdot (1/40000) + 0.02 \cdot (39999/40000)} = 0.001224$$

(b) Não pois nesta subpopulação de indivíduos indivíduos com sintomas clínicos a probabilidade de doença não é mais 1/40000.

Por exemplo, supondo que registros mostrem que 40% dos indivíduos com sintomas clínicos de fato possuem a doença (e então P[D]=0,4), a probabilidade um índivíduo testado positivo ter a doença seria: $P[D|P]=\frac{P[P|\overline{D}]P[D]}{P[P|D]P[D]+P[P|\overline{D}]P[\overline{D}]}=\frac{0,98\cdot0,4}{0,98\cdot0,4+0,02\cdot0,6}=0.9703$

$$P[D|P] = \frac{P[P|D]P[D]}{P[P|D]P[D] + P[P|\overline{D}]P[\overline{D}]} = \frac{0.98 \cdot 0.4}{0.98 \cdot 0.4 + 0.02 \cdot 0.6} = 0.9703$$

Semana 4 (av-03)

1. Uma variável aleatória tem função de densidade de probabilidade dada por:

$$f(x) = \begin{cases} Kx & \text{para } 0 < x < 5 \\ 0 & \text{caso contrário} \end{cases}$$

- (a) Obtenha o valor de K.
- (b) Obtenha P[X < 2].
- (c) Obtenha P[1, 5 < X < 3].
- (d) Obtenha P[X > 2, 5].
- (e) Obtenha o valor médio de X.
- (f) Obtenha a expressão de P[X < x] para um valor qualquer de x.

Solução:

$$\int_{0}^{5} f(x)dx = 1$$

$$\int_{0}^{5} Kxdx = 1$$

$$K \frac{x^{2}}{2} \Big|_{0}^{5} = 1$$

$$K \frac{5^{2} - 0^{2}}{2} = 1$$

$$K = \frac{2}{25} = 0,08$$

(b)
$$P[X < 2] = \int_0^2 0.08x dx = 0.08 \frac{2^2 - 0^2}{2} = 0.16.$$

(c)
$$P[1, 5 < X \le 3] = \int_{1.5}^{3} 0.08x dx = 0.08 \frac{3^2 - (1.5)^2}{2} = 0.27.$$

(d)
$$P[X \ge 2, 5] = \int_{2,5}^{5} 0.08x dx = 0.08 \frac{5^2 - (2,5)^2}{2} = 0.75.$$

(e)
$$E[X] = \int_0^5 x \cdot (0.08x) dx = 0.08 \frac{5^3 - 0^3}{3} = 3.33.$$

(f)
$$F(x) = P[X < x] = \int_0^x 0.08x dx = 0.08 \frac{x^2 - 0^2}{2} = 0.04x^2$$
.

Observação: as probabilidades anteriores poderiam ter sido calculadas à partir da expressão de F(x):

(b)
$$P[X < 2] = F(2) = 0.042^2 = 0.16$$
.

(c)
$$P[1, 5 < X \le 3] = F(3) - F(1, 5) = 0.043^2 - 0.041, 5^2 = 0.36 - 0.09 = 0.27.$$

(d)
$$P[X \ge 2, 5] = 1 - F(2, 5) = 1 - 0,042, 5^2 = 1 - 0,25 = 0,75.$$

Gráficos das funções e solução computacional (utilizando a linguagem R):

>
$$fx \leftarrow function(x) ifelse(x > 0 & x < 5, 0.08 * x, 0)$$

> Fx <- function(x)
$$\{y \leftarrow ifelse(x > 0 & x < 5, 0.04 * x^2, 0); y[x>5] <- 1; return(y)\}$$

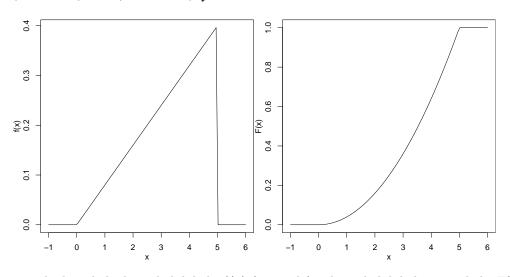


Figura 1: Funções de densidade de probabilidade f(x) (esquerda) e de probabilidade acumulada F(x) (direita)

Cálculos das probabilidade por integração de f(x) e por F(x)

> integrate(fx, 0, 2)\$value

[1] 0.16

> Fx(2)

[1] 0.16

> integrate(fx, 1.5, 3)\$value

[1] 0.27

> Fx(3) - Fx(1.5)

```
[1] 0.27
> #(d)
> integrate(fx, 2.5, 5)$value
[1] 0.75
> 1-Fx(2.5)
[1] 0.75
```

2. Registros mostram que em um determinado site de vendas são efetuadas, em média, 3,2 transações por dia. Além disto verificou-se que a distribuição de Poisson, com função de probabilidade dada por:

$$P[X = x] = \frac{e^{-\lambda} \lambda^x}{x!}$$

é adequada para descrever o número de vendas diárias.

- (a) Sabe-se que para distribuição de Poisson $E[X] = \lambda$. Desta forma, qual a probabilidade de que em um dia o número de transações fique abaixo da média?
- (b) Qual a probabilidade de que não haja transações em um determinado dia?
- (c) Qual a probabilidade de que haja pelo menos duas transações em um determinado dia?
- (d) Qual a probabilidade de que se passem dois dias consecutivos sem transações?
- (e) Qual a probabilidade que se tenha três dias consecutivos com número de transações abaixo da média antes que se tenha um dia com número maior que a média?

Solução:

Notação:

X : número de transações diárias no site

$$X \sim P(\lambda = 3, 2)$$

$$P[X = x] = \frac{e^{-\lambda}\lambda^x}{x!}$$

(a)
$$P[X \le 3] = P[X = 0] + P[X = 1] + P[X = 2] + P[X = 3] = \sum_{i=1}^{n} \frac{e^{-3,2}3,2^{i}}{i!} = 0.6025$$

(b)
$$P[X=0] = \frac{e^{-3.2}3.2^0}{0!} = e^{-3.2}0.04076$$

(b)
$$P[X = 0] = \frac{e^{-3,2}3,2^0}{0!} = e^{-3,2}0.04076$$

(c) $P[X \ge 2] = 1 - P[X < 2] = 1 - (P[X = 0] + P[X = 1])1 - e^{-3,2}(1+3,2) = 0.8288$

(d)
$$P[X_1 = 0 \cap X_2 = 0] \stackrel{ind}{=} P[X_1 = 0] \cdot P[X_2 = 0] e^{-3,2} \cdot e^{-3,2} = 0.001662$$
 Solução alternativa:

 Y_1 : número de transações em dois dias no site

$$Y_1 \sim P(\lambda = 2 \cdot 3, 2 = 6, 4)$$

$$P[Y_1 = 0] = \frac{e^{-6,4}6, 4^0}{0!} = 0.001662$$

(e)
$$P[\cdot] = P[X \le 3]^3 \cdot P[X > 3] = 0.08694$$

Solução alternativa:

 Y_2 : número de dias com transação abaixo da média até o primeiro dia com transações acima da média $Y_2 \sim G(p = P[X > 3] = 0.3975)$

$$P[Y_2 = y] = (1 - p)^x \cdot p = (0.6025)^3 \cdot 0.3975) = 0.08694$$

Soluções computacionais com o programa R:

[1] 0.6025

[1] 0.04076

[1] 0.8288

[1] 0.001662

[1] 0.08694