(15 de Agosto) Paradigma para inferência. Visão frequêntista, bayesiana. Função de verossimilhança, desvio e verossimilhança relativa. Exemplos.
(22 de Agosto) Teste da razão de verossimilhanças. Algoritmo de Newton Raphson com um e mais parâmetros. Reparametrização.
(29 de Agosto) Programação do algoritmo de NR para as distribuições Poisson, Exponencial, Normal com variância conhecida e gamma com um parâmetro conhecido. Discussão do valor inicial e critérios de convergência. Derivadas numéricas no R.
(5 de Setembro) Programação do algoritmo de NR para a distribuição Exponencial Potência com um parâmetro conhecido. Gráfico da densidade e do logaritmo da função de verossimilhança. Derivadas numéricas no R. Comparar as contas feitas a mão com os resultados feitos usando deriv3 no R. Mostramos que a distribuição Exponencial Potência é um caso particular da distribuição normal.
(19 de Setembro) Função de verossimilhança perfilhada (exemplo com a distribuição gamma). Teste de Wald e aproximação quadrática do logaritmo da função de verossimilhança. Intervalos de confiança com base no logaritmo da função de verossimilhança e função desvio. Processo Poisson não homogêneo.
(26 de Setembro) Foram estudadas duas parametrizações da distribuição beta. Com isto, estimamos os parâmetros do modelo usando BFGS e L-BFGS-B dentro da função optim() no R. Além disso, foram feitas as curvas de níveis (contornos) e o gráfico de superfície da função de log-verossimilhança para as duas parametrizações.
(3 de Outubro) Programação do modelo AR(1), usando a distribuição normal univariada considerando todas as observações (a primeria v.a. possui normal com outros parâmetros), sem a primeira observação (expressão fechada para o EMV de rho). Finalmente usamos a distribuição normal multivariada para ajustar o parâmetro do modelo AR(1). Comparar os resultados anteriores com as funções arima e ar do R.
(10 de Outubro) Modelos de regressão com efeitos aleatórios. Conceitos gerais (Função de Verossimilhanca Marginal). Alguns modelos particulares Modelo Poisson com intercepto aleatório e Modelo beta com efeitos aleatórios. Integração numérica (Laplace, Quadatura Gaussiana, Monte Carlo).
(17 de Outubro) Exercícios sobre o comando integrate() do R com a distribuição Exponencial, Normal e Poisson. Cálculo de integrais conhecidas, probabilidades acumuladas. Comparamos as funções do R com o comando integrate(). Foram estudadas algumas ideias de como construir o logaritmo da função de verossimilhança marginal para o modelo normal com efeito aleatório normal e o modelo Poisson com efeito aleatório normal, tudo isso usando o comando integrate do R.
(24 de Outubro) Exercícios sobre Quadratura de Gauss Hermite usando as funções ghq (library(glmmML)) e gauss.quad (library(statmod)) do R. Cálculo de integrais conhecidas. Comparamos a Quadratura de Gauss Hermite com o comando integrate() do R. Estimação de parâmetros para o logaritmo da função de verossimilhança marginal para o modelo normal com intercepto aleatório e o modelo Poisson com intercepto aleatório.
(31 de Outubro) Estudo sobre as distribuições Birnbaum-Saunders, Gumbel, Slash, Pareto e Gaussiana Inversa.
(7 de Novembro) Apresentação de seminários.
(14 de Novembro) Estimação de parâmetros para o logaritmo da função de verossimilhança marginal para o modelo normal com intercepto aleatório e o modelo Poisson com intercepto aleatório usando a aproximação de Laplace.
(21 de Novembro) Não haverá aula.
(28 de Novembro) Curso Geert (Modelos Mistos).
(5 de Dezembro) Seminários.